The Principle of Overcompleteness in Multivariate Economic Time Series Models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14560%2F06%3A00031653" target="_blank" >RIV/00216224:14560/06:00031653 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
The Principle of Overcompleteness in Multivariate Economic Time Series Models
Original language description
In this paper we apply the principle of overcompleteness to sparse parameter estimation in multivariate ARMA models (VARMA models). This new approach is based on the Basis Pursuit Algorithm originally suggested by Chen et al [1]. Overcompleteness means that we admit higher range of orders within which we are looking for lowest possible number of significant parameters (sparsity). A previous study confirmed that this relaxation of the commonly used low-order assumption may yield more precise forecasts from ARMA models when compared with standard statistical estimation techniques. Here an analogical approach will be used for the analysis of multivariate economic time series. It is well-known that particular time series are strongly cross-correlated. Thatis why we expect our technique to be possibly successful for the multivariate case too.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
AH - Economics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2006
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Mathematical Methods in Economics 2006
ISBN
80-7043-479-1
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
—
Publisher name
University of Pilsen
Place of publication
Plzeň
Event location
Plzeň
Event date
Jan 1, 2006
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000262064700057