All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Improving stock market volatility forecasts with complete subset linear and quantile HAR models

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14560%2F21%3A00122736" target="_blank" >RIV/00216224:14560/21:00122736 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/journal/expert-systems-with-applications" target="_blank" >https://www.sciencedirect.com/journal/expert-systems-with-applications</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.eswa.2021.115416" target="_blank" >10.1016/j.eswa.2021.115416</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Improving stock market volatility forecasts with complete subset linear and quantile HAR models

  • Original language description

    Volatility forecasting plays an integral role in risk management, investments and security valuation for all assets with uncertain future payoffs. We enrich the literature by presenting computationally intensive variations of the heterogeneous autoregressive (HAR) volatility model: the complete subset linear/quantile regression HAR models, HAR-CSLR and HAR-CSQR. Predictions of 1-to 22-day-ahead volatility of four major market indices (NIKKEI 225, S&amp;P 500, SSEC and STOXX 50) show that both models tend to outperform several benchmark HAR models. Forecasting accuracy improvements tend to stabilize for longer forecasting horizons: e.g., fiveday-ahead improvements range from 6.57% (SSEC) to 35.62% (NIKKEI 225) and from 3.99% (STOXX) to 9.54% for mean square error (MSE) and QLIKE loss functions. In terms of MSE, the HAR-CSQR model outperforms several standard benchmark HAR models across all market indices and forecast horizons.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    50206 - Finance

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Expert Systems with Applications

  • ISSN

    0957-4174

  • e-ISSN

    1873-6793

  • Volume of the periodical

    183

  • Issue of the periodical within the volume

    November

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    11

  • Pages from-to

    1-11

  • UT code for WoS article

    000691769900005

  • EID of the result in the Scopus database

    2-s2.0-85109394941