AIDA Framework: Real-Time Correlation and Prediction of Intrusion Detection Alerts
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14610%2F19%3A00109946" target="_blank" >RIV/00216224:14610/19:00109946 - isvavai.cz</a>
Result on the web
<a href="https://dl.acm.org/doi/10.1145/3339252.3340513" target="_blank" >https://dl.acm.org/doi/10.1145/3339252.3340513</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3339252.3340513" target="_blank" >10.1145/3339252.3340513</a>
Alternative languages
Result language
angličtina
Original language name
AIDA Framework: Real-Time Correlation and Prediction of Intrusion Detection Alerts
Original language description
In this paper, we present AIDA, an analytical framework for processing intrusion detection alerts with a focus on alert correlation and predictive analytics. The framework contains components that filter, aggregate, and correlate the alerts, and predict future security events using the predictive rules distilled from historical records. The components are based on stream processing and use selected features of data mining (namely sequential rule mining) and complex event processing. The framework was deployed as an analytical component of an alert sharing platform, where alerts from intrusion detection systems, honeypots, and other data sources are exchanged among the community of peers. The deployment is briefly described and evaluated to illustrate the capabilities of the framework in practice. Further, the framework may be deployed locally for experimentations over datasets.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10200 - Computer and information sciences
Result continuities
Project
<a href="/en/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: CyberSecurity, CyberCrime and Critical Information Infrastructures Center of Excellence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 14th International Conference on Availability, Reliability and Security (ARES 2019)
ISBN
9781450371643
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
„81:1“-„81:8“
Publisher name
ACM
Place of publication
New York
Event location
Canterbury
Event date
Aug 26, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000552726400081