All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Exploiting historical data: pruning autotuning spaces and estimating the number of tuning steps

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14610%2F19%3A00115100" target="_blank" >RIV/00216224:14610/19:00115100 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-48340-1_23" target="_blank" >http://dx.doi.org/10.1007/978-3-030-48340-1_23</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-48340-1_23" target="_blank" >10.1007/978-3-030-48340-1_23</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Exploiting historical data: pruning autotuning spaces and estimating the number of tuning steps

  • Original language description

    Autotuning, the practice of automatic tuning of code to provide performance portability, has received increased attention in the research community, especially in high performance computing. Ensuring high performance on a variety of hardware usually means modifications to the code, often via different values of a selected set of parameters, such as tiling size, loop unrolling factor or data layout. However, the search space of all possible combinations of these parameters can be enormous. Traditional search methods often fail to find a well-performing set of parameter values quickly. We have found that certain properties of tuning spaces do not vary much when hardware is changed. In this paper, we demonstrate that it is possible to use historical data to reliably predict the number of tuning steps necessary to find a well-performing configuration, and to reduce the size of the tuning space. We evaluate our hypotheses on a number of GPU-accelerated benchmarks written in CUDA and OpenCL.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_013%2F0001802" target="_blank" >EF16_013/0001802: CERIT Scientific Cloud</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Computer Science

  • ISBN

    9783030483395

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    13

  • Pages from-to

    295-307

  • Publisher name

    Springer, Cham

  • Place of publication

    Cham, Switzerland

  • Event location

    Göttingen

  • Event date

    Jan 1, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000557422400001