Provenance of specimen and data – A prerequisite for AI development in computational pathology
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14610%2F23%3A00131767" target="_blank" >RIV/00216224:14610/23:00131767 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S1871678423000493" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1871678423000493</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.nbt.2023.09.006" target="_blank" >10.1016/j.nbt.2023.09.006</a>
Alternative languages
Result language
angličtina
Original language name
Provenance of specimen and data – A prerequisite for AI development in computational pathology
Original language description
AI development in biotechnology relies on high-quality data to train and validate algorithms. The FAIR principles (Findable, Accessible, Interoperable, and Reusable) and regulatory frameworks such as the In Vitro Diagnostic Regulation (IVDR) and the Medical Device Regulation (MDR) specify requirements on specimen and data provenance to ensure the quality and traceability of data used in AI development. In this paper, a framework is presented for recording and publishing provenance information to meet these requirements. The framework is based on the use of standardized models and protocols, such as the W3C PROV model and the ISO 23494 series, to capture and record provenance information at various stages of the data generation and analysis process. The framework and use case illustrate the role of provenance information in supporting the development of high-quality AI algorithms in biotechnology. Finally, the principles of the framework are illustrated in a simple computational pathology use case, showing how specimen and data provenance can be used in the development and documentation of an AI algorithm. The use case demonstrates the importance of managing and integrating distributed provenance information and highlights the complex task of considering factors such as semantic interoperability, confidentiality, and the verification of authenticity and integrity.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
NEW BIOTECHNOLOGY
ISSN
1871-6784
e-ISSN
—
Volume of the periodical
78
Issue of the periodical within the volume
DEC
Country of publishing house
DE - GERMANY
Number of pages
7
Pages from-to
22-28
UT code for WoS article
001084774500001
EID of the result in the Scopus database
2-s2.0-85172171953