Multispeed genome diploidization and diversification after an ancient allopolyploidization
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F17%3A00095490" target="_blank" >RIV/00216224:14740/17:00095490 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1111/mec.14379" target="_blank" >http://dx.doi.org/10.1111/mec.14379</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/mec.14379" target="_blank" >10.1111/mec.14379</a>
Alternative languages
Result language
angličtina
Original language name
Multispeed genome diploidization and diversification after an ancient allopolyploidization
Original language description
Hybridization and genome doubling (allopolyploidy) have led to evolutionary novelties as well as to the origin of new clades and species. Despite the importance of allopolyploidization, the dynamics of postpolyploid diploidization (PPD) at the genome level has been only sparsely studied. The Microlepidieae (MICR) is a crucifer tribe of 17 genera and c. 56 species endemic to Australia and New Zealand. Our phylogenetic and cytogenomic analyses revealed that MICR originated via an intertribal hybridization between ancestors of Crucihimalayeae (n = 8; maternal genome) and Smelowskieae (n = 7; paternal genome), both native to the Northern Hemisphere. The reconstructed ancestral allopolyploid genome (n = 15) originated probably in northeastern Asia or western North America during the Late Miocene (c. 10.6-7 million years ago) and reached the Australian mainland via long-distance dispersal. In Australia, the allotetraploid genome diverged into at least three main subclades exhibiting different levels of PPD and diversity: 1.25-fold descending dysploidy (DD) of n = 15 -> n = 12 (autopolyploidy -> 24) in perennial Arabidella (3 species), 1.5-fold DD of n = 15 -> n = 10 in the perennial Pachycladon (11 spp.) and 2.1-3.75-fold DD of n = 15 -> n = 7-4 in the largely annual crown-group genera (42 spp. in 15 genera). These results are among the first to demonstrate multispeed genome evolution in taxa descending from a common allopolyploid ancestor. It is suggested that clade-specific PPD can operate at different rates and efficacies and can be tentatively linked to life histories and the extent of taxonomic diversity.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10611 - Plant sciences, botany
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Molecular Ecology
ISSN
0962-1083
e-ISSN
—
Volume of the periodical
26
Issue of the periodical within the volume
22
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
6445-6462
UT code for WoS article
000417241800018
EID of the result in the Scopus database
—