All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Computational characterization of hybrid proteins containing ordered and intrinsically disordered regions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F17%3A00095560" target="_blank" >RIV/00216224:14740/17:00095560 - isvavai.cz</a>

  • Result on the web

    <a href="https://2017.febscongress.org/abstract_preview.aspx?idAbstractEnc=4424170092093093093097424170" target="_blank" >https://2017.febscongress.org/abstract_preview.aspx?idAbstractEnc=4424170092093093093097424170</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Computational characterization of hybrid proteins containing ordered and intrinsically disordered regions

  • Original language description

    Intrinsically disordered proteins (IDPs) characterized by polypeptide chains that fail to fold into stable and well defined tertiary structure in an isolated state have been under our interest. IDPs play key roles in processes such as molecular recognition, regulation of transcription and they are related to neurodegenerative diseases. Most of IDPs are in fact intrinsically disordered regions (IDRs) that are tethered to ordered domains (ODs). It is imperative that the biophysical properties of these regions be studied in their naturally occurring contexts, which is tethered to ODs. It is difficult to cope with such systems for the experimental techniques and for computational methods. Typical experimental methods for study of IDPs are nuclear magnetic resonance (NMR) and small angle X-ray scattering (SAXS). The obtained data were used for verification of predicted values from the computational simulations. In our study, we generated structural ensembles of the -subunit of RNA polymerase and regulatory domain of human tyrosine hydroxylase using molecular dynamics simulations. The reliability of the obtained ensembles generated under different force field parameters (AMBER99SB-ILDN/CHARMM22 + TIP3P/TIP4P-D) was checked by the comparison of the corresponding calculated properties with their experimental values. Namely we monitored: NMR chemical shifts, residual dipolar couplings, paramagnetic relaxation enhancement, relaxation rates, and SAXS data. The best agreement was obtained for the AMBER99SB-ILDN/TIP4P-D force field parameters.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10608 - Biochemistry and molecular biology

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů