All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

XPS depth profiling of derivatized amine and anhydride plasma polymers: Evidence of limitations of the derivatization approach

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F17%3A00097541" target="_blank" >RIV/00216224:14740/17:00097541 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.sciencedirect.com/science/article/pii/S0169433216322152" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0169433216322152</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.apsusc.2016.10.099" target="_blank" >10.1016/j.apsusc.2016.10.099</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    XPS depth profiling of derivatized amine and anhydride plasma polymers: Evidence of limitations of the derivatization approach

  • Original language description

    The quantitative analysis of the chemistry at the surface of functional plasma polymers is highly important for the optimization of their deposition conditions and, therefore, for their subsequent applications. The chemical derivatization of amine and carboxyl-anhydride layers is a well-known technique already applied by many researchers, notwithstanding the known drawback of the derivatization procedures like side or uncomplete reactions that could lead to "unreliable" results. In this work, X-ray photoelectron spectroscopy (XPS) combined with depth profiling with argon clusters is applied for the first time to study derivatized amine and carboxyl-anhydride plasma polymer layers. It revealed an additional important parameter affecting the derivatization reliability, namely the permeation of the derivatizing molecule through the target analysed layer, i.e. the composite effect of the probe molecule size and the layer porosity. Amine-rich films prepared by RF low pressure plasma polymerization of cyclopropylamine were derivatized with trifluoromethyl benzaldehide (TFBA) and it was observed by that the XPS-determined NH2 concentration depth profile is rapidly decreasing over top ten nanometers of the layer. The anhydride-rich films prepared by atmospheric plasma co-polymerization of maleic anhydride and C2H2 have been reacted with, parafluoroaniline and trifluoroethyl amine. The decrease of the F signal in top surface layer of the anhydride films derivatized by the "large" parafluoroaniline was observed similarly as for the amine films but the derivatization with the smaller trifluoroethylamine (TFEA) led to a more homogenous depth profile. The data analysis suggests that the size of the derivatizing molecule is the main factor, showing that the very limited permeation of the TFBA molecule can lead to underestimated densities of primary amines if the XPS analysis is solely carried out at a low take-off angle. In contrast, TFEA is found to be an efficient derivatization agent of anhydride groups with high permeability through the carboxyl-anhydride layer. (C) 2016 Elsevier B.V. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    <a href="/en/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Surface Science

  • ISSN

    0169-4332

  • e-ISSN

  • Volume of the periodical

    394

  • Issue of the periodical within the volume

    February

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    8

  • Pages from-to

    578-585

  • UT code for WoS article

    000389152900067

  • EID of the result in the Scopus database

    2-s2.0-84994360855