All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hyperfine Effects in Ligand NMR: Paramagnetic Ru(III) Complexes with 3-Substituted Pyridines

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F18%3A00100759" target="_blank" >RIV/00216224:14740/18:00100759 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1021/acs.inorgchem.7b02440" target="_blank" >http://dx.doi.org/10.1021/acs.inorgchem.7b02440</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.inorgchem.7b02440" target="_blank" >10.1021/acs.inorgchem.7b02440</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hyperfine Effects in Ligand NMR: Paramagnetic Ru(III) Complexes with 3-Substituted Pyridines

  • Original language description

    NMR spectroscopy is an indispensable tool in characterizing molecular systems, including transition-metal complexes. However, paramagnetic transition-metal complexes such as those with ruthenium in the +3 oxidation state are troublemakers because their unpaired electrons induce a fast nuclear spin relaxation that significantly broadens their NMR resonances. We recently demonstrated that the electronic and spin structures of paramagnetic Ru(III) systems can be characterized in unprecedented details by combining experimental NMR results with relativistic density-functional theory (Novotny et al. J. Am. Chem. Soc. 2016, 138, 8432). In this study we focus on paramagnetic analogs of NAMI with the general structure [3-R-pyH]+trans-[RuIIICl4(DMSO)(3-R-py)]-, where 3-R-py stands for a 3-substituted pyridine. The experimental NMR data are interpreted in terms of the contributions of hyperfine (HF) NMR shielding and the distribution of spin density calculated using relativistic DFT. The DFT computational methodology is evaluated, and the effects of substituents, environment, and relativity on the hyperfine shielding are discussed. Particular attention is paid to the analysis of the fundamental Fermi-contact (FC), spin-dipole (SD), and paramagnetic spin-orbit (PSO) terms that contribute to the hyperfine 1H and 13C NMR shifts of the individual atoms in the pyridine ligands and the spin-polarization effects in the ligand system that are linked to the character of the metal-ligand bond. The individual HF shielding terms are systematically discussed as they relate to the traditional, but somewhat mixed, contact and pseudocontact NMR contributions used extensively by experimental spectroscopists in biomolecular NMR and the development of PARACEST magnetic-resonance contrast agents.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10402 - Inorganic and nuclear chemistry

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Inorganic Chemistry

  • ISSN

    0020-1669

  • e-ISSN

    1520-510X

  • Volume of the periodical

    57

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    641-652

  • UT code for WoS article

    000422810900015

  • EID of the result in the Scopus database