Functionally specific binding regions of microtubule-associated protein 2c exhibit distinct conformations and dynamics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F18%3A00101098" target="_blank" >RIV/00216224:14740/18:00101098 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1074/jbc.RA118.001769" target="_blank" >http://dx.doi.org/10.1074/jbc.RA118.001769</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1074/jbc.RA118.001769" target="_blank" >10.1074/jbc.RA118.001769</a>
Alternative languages
Result language
angličtina
Original language name
Functionally specific binding regions of microtubule-associated protein 2c exhibit distinct conformations and dynamics
Original language description
Microtubule-associated protein 2c (MAP2c) is a 49-kDa intrinsically disordered protein regulating the dynamics of microtubules in developing neurons. MAP2c differs from its sequence homologue Tau in the pattern and kinetics of phosphorylation by cAMP-dependent protein kinase (PKA). Moreover, the mechanisms through which MAP2c interacts with its binding partners and the conformational changes and dynamics associated with these interactions remain unclear. Here, we used NMR relaxation and paramagnetic relaxation enhancement techniques to determine the dynamics and long-range interactions within MAP2c. The relaxation rates revealed large differences in flexibility of individual regions of MAP2c, with the lowest flexibility observed in the known and proposed binding sites. Quantitative conformational analyses of chemical shifts, small-angle X-ray scattering (SAXS), and paramagnetic relaxation enhancement measurements disclosed that MAP2c regions interacting with important protein partners, including Fyn tyrosine kinase, plectin, and PKA, adopt specific conformations. High populations of polyproline II and alpha-helices were found in Fyn- and plectin-binding sites of MAP2c, respectively. The region binding the regulatory subunit of PKA consists of two helical motifs bridged by a more extended conformation. Of note, although MAP2c and Tau did not differ substantially in their conformations in regions of high sequence identity, we found that they differ significantly in long-range interactions, dynamics, and local conformation motifs in their N-terminal domains. These results highlight that the N-terminal regions of MAP2c provide important specificity to its regulatory roles and indicate a close relationship between MAP2c's biological functions and conformational behavior.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10608 - Biochemistry and molecular biology
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Biological Chemistry
ISSN
0021-9258
e-ISSN
—
Volume of the periodical
293
Issue of the periodical within the volume
34
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
13297-13309
UT code for WoS article
000442730200027
EID of the result in the Scopus database
2-s2.0-85052144816