Short-term assessment of cadmium toxicity and uptake from different types of Cd-based Quantum Dots in the model plant Allium cepa L.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F18%3A00102255" target="_blank" >RIV/00216224:14740/18:00102255 - isvavai.cz</a>
Alternative codes found
RIV/00216305:26620/18:PU126819
Result on the web
<a href="http://dx.doi.org/10.1016/j.ecoenv.2018.01.044" target="_blank" >http://dx.doi.org/10.1016/j.ecoenv.2018.01.044</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ecoenv.2018.01.044" target="_blank" >10.1016/j.ecoenv.2018.01.044</a>
Alternative languages
Result language
angličtina
Original language name
Short-term assessment of cadmium toxicity and uptake from different types of Cd-based Quantum Dots in the model plant Allium cepa L.
Original language description
We report on the toxicity and bioaccumulation of three different types of Cd-based quantum dots (QDs), dispersed in aqueous medium, for a model plant Allium cepa L. It is believed that encapsulation of nanoparticles should reduce their toxicity and increase their stability in different environments; in this work we studied how QD encapsulation affects their phytotoxicity. Core, core/shell, and core/shell/shell QDs (CdTe, CdTe/ZnS, and CdTe/CdS/ZnS QDs capped by 2-mercaptopropionic acid) were tested and CdCl2 was used as a positive control. After 24-h and 72-h exposure, total Cd content (MCd) and bioaccumulation factors (BAFs) were determined in all parts of A. cepa plants (roots, bulb, shoot), and the total length of the root system was monitored as a toxicity end-point. Measurements of total Cd content versus free Cd2+ content (with Differential Pulse Voltammetry, DPV) in exposure media showed differences in chemical stability of the three QD types. Correspondingly, selected QDs showed different toxicity for A. cepa and different Cd bioaccumulation patterns. CdTe QDs were the most toxic; their effect was similar to CdCl2 due to the release of free Cd2+, which was confirmed by the DPV measurements. Plants exposed to CdTe QDs also bioaccumulated the most Cd among all QD exposure groups. CdTe/ZnS QDs showed no toxicity and very low bioaccumulation of Cd in A. cepa; the main source of measured Cd in the plants were QDs adsorbed on their roots, which was confirmed by fluorescence microscopy. On the contrary, CdTe/CdS/ZnS QD toxicity and bioaccumulation patterns were similar to those of CdTe QDs and pointed to unstable CdS/ZnS shells.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10406 - Analytical chemistry
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Ecotoxicology and Environmental Safety
ISSN
0147-6513
e-ISSN
—
Volume of the periodical
153
Issue of the periodical within the volume
MAY
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
9
Pages from-to
23-31
UT code for WoS article
000427808700004
EID of the result in the Scopus database
2-s2.0-85041820825