All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Nature of the Three-Electron Bond

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F18%3A00104282" target="_blank" >RIV/00216224:14740/18:00104282 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubs.acs.org/doi/10.1021/acs.jpca.7b11919" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jpca.7b11919</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jpca.7b11919" target="_blank" >10.1021/acs.jpca.7b11919</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Nature of the Three-Electron Bond

  • Original language description

    We analyze the properties of 15 3-electron bonds, which include sigma-3-electron-bonds, such as dihalide radical anions and di-noble gas radical cations, pi-3-electron-bonds as in hydrazine radical cations, and doubly-pi-(3e)-bonded species such as O-2, FeO+, S-2, etc. The primary analytical tool is the breathing-orbital valence-bond (BOVB) method, which enables us to quantify the charge shift resonance energy (RECS) of the three electrons, and the bond dissociation energies (De). BOVB is tested reliable against MRCI calculations. Our findings show that in all 3-electron bonds, none of the VB structures have by themselves any bonding. In fact, in each VB structure, the three electrons maintain Pauli repulsion, while the entire bonding energy arises from resonance due to the charge shift between the two or more constituent VB structures. Hence, 3e-bonds are charge shift bonds (CSBs). The CSB character is probed by calculating the Laplacian (L) of the 3e-bond. Thus, much like the CSBs in electron-pair bonds, such as F-2 or the central bond in [1.1.1]propellane, here too L is positive, thus showing the excess kinetic energy of the shared density due to the Pauli repulsion in the 3-electron VB structures. The RECS values for 3-electron bonds are invariably larger than the corresponding bond energies. For the doubly-pi-(3e) -bonded species, RECS is very large, exceeding 100 kcal mol(-1). As such, it is fitting to conclude that sigma- and pi-3-electron-bonds find their natural place in the CSB family along with two-electron CSBs, with which they share identical energetic and topological characteristics. Experimental manifestations/tests of 3e-CSBs are proposed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    <a href="/en/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Physical Chemistry A

  • ISSN

    1089-5639

  • e-ISSN

  • Volume of the periodical

    122

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    1873-1885

  • UT code for WoS article

    000426221000006

  • EID of the result in the Scopus database

    2-s2.0-85042540229