Nature of the Three-Electron Bond
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F18%3A00104282" target="_blank" >RIV/00216224:14740/18:00104282 - isvavai.cz</a>
Result on the web
<a href="https://pubs.acs.org/doi/10.1021/acs.jpca.7b11919" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jpca.7b11919</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpca.7b11919" target="_blank" >10.1021/acs.jpca.7b11919</a>
Alternative languages
Result language
angličtina
Original language name
Nature of the Three-Electron Bond
Original language description
We analyze the properties of 15 3-electron bonds, which include sigma-3-electron-bonds, such as dihalide radical anions and di-noble gas radical cations, pi-3-electron-bonds as in hydrazine radical cations, and doubly-pi-(3e)-bonded species such as O-2, FeO+, S-2, etc. The primary analytical tool is the breathing-orbital valence-bond (BOVB) method, which enables us to quantify the charge shift resonance energy (RECS) of the three electrons, and the bond dissociation energies (De). BOVB is tested reliable against MRCI calculations. Our findings show that in all 3-electron bonds, none of the VB structures have by themselves any bonding. In fact, in each VB structure, the three electrons maintain Pauli repulsion, while the entire bonding energy arises from resonance due to the charge shift between the two or more constituent VB structures. Hence, 3e-bonds are charge shift bonds (CSBs). The CSB character is probed by calculating the Laplacian (L) of the 3e-bond. Thus, much like the CSBs in electron-pair bonds, such as F-2 or the central bond in [1.1.1]propellane, here too L is positive, thus showing the excess kinetic energy of the shared density due to the Pauli repulsion in the 3-electron VB structures. The RECS values for 3-electron bonds are invariably larger than the corresponding bond energies. For the doubly-pi-(3e) -bonded species, RECS is very large, exceeding 100 kcal mol(-1). As such, it is fitting to conclude that sigma- and pi-3-electron-bonds find their natural place in the CSB family along with two-electron CSBs, with which they share identical energetic and topological characteristics. Experimental manifestations/tests of 3e-CSBs are proposed.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
<a href="/en/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physical Chemistry A
ISSN
1089-5639
e-ISSN
—
Volume of the periodical
122
Issue of the periodical within the volume
7
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
1873-1885
UT code for WoS article
000426221000006
EID of the result in the Scopus database
2-s2.0-85042540229