ArfB can displace mRNA to rescue stalled ribosomes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F20%3A00118225" target="_blank" >RIV/00216224:14740/20:00118225 - isvavai.cz</a>
Result on the web
<a href="https://www.nature.com/articles/s41467-020-19370-z.pdf" target="_blank" >https://www.nature.com/articles/s41467-020-19370-z.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41467-020-19370-z" target="_blank" >10.1038/s41467-020-19370-z</a>
Alternative languages
Result language
angličtina
Original language name
ArfB can displace mRNA to rescue stalled ribosomes
Original language description
Ribosomes stalled during translation must be rescued to replenish the pool of translation-competent ribosomal subunits. Bacterial alternative rescue factor B (ArfB) releases nascent peptides from ribosomes stalled on mRNAs truncated at the A site, allowing ribosome recycling. Prior structural work revealed that ArfB recognizes such ribosomes by inserting its C-terminal alpha -helix into the vacant mRNA tunnel. In this work, we report that ArfB can efficiently recognize a wider range of mRNA substrates, including longer mRNAs that extend beyond the A-site codon. Single-particle cryo-EM unveils that ArfB employs two modes of function depending on the mRNA length. ArfB acts as a monomer to accommodate a shorter mRNA in the ribosomal A site. By contrast, longer mRNAs are displaced from the mRNA tunnel by more than 20 angstrom and are stabilized in the intersubunit space by dimeric ArfB. Uncovering distinct modes of ArfB function resolves conflicting biochemical and structural studies, and may lead to re-examination of other ribosome rescue pathways, whose functions depend on mRNA lengths. Alternative rescue factor B (ArfB) is an enzyme that releases peptides from stalled ribosomes to allow ribosome recycling. Here the authors carry-out cryo-EM analyses of 70S ribosomes complexed with ArfB on either a short or longer mRNA to reveal distinct modes of ArfB function.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10608 - Biochemistry and molecular biology
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nature Communications
ISSN
2041-1723
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
9
Pages from-to
5552
UT code for WoS article
000591843300007
EID of the result in the Scopus database
2-s2.0-85094980006