Gradual evolution of allopolyploidy in Arabidopsis suecica
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F21%3A00119687" target="_blank" >RIV/00216224:14740/21:00119687 - isvavai.cz</a>
Result on the web
<a href="https://www.nature.com/articles/s41559-021-01525-w" target="_blank" >https://www.nature.com/articles/s41559-021-01525-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41559-021-01525-w" target="_blank" >10.1038/s41559-021-01525-w</a>
Alternative languages
Result language
angličtina
Original language name
Gradual evolution of allopolyploidy in Arabidopsis suecica
Original language description
Arabidopsis suecica is a natural allotetraploid species formed via hybridization of Arabidopsis thaliana and Arabidopsis arenosa. Comparative analysis of genome and transcriptome data shows no evidence for major genomic changes linked to structural and functional alterations in A. suecica but reveals changes to the meiotic machinery and cyto-nuclear processes. Most diploid organisms have polyploid ancestors. The evolutionary process of polyploidization is poorly understood but has frequently been conjectured to involve some form of 'genome shock', such as genome reorganization and subgenome expression dominance. Here we study polyploidization in Arabidopsis suecica, a post-glacial allopolyploid species formed via hybridization of Arabidopsis thaliana and Arabidopsis arenosa. We generated a chromosome-level genome assembly of A. suecica and complemented it with polymorphism and transcriptome data from all species. Despite a divergence around 6 million years ago (Ma) between the ancestral species and differences in their genome composition, we see no evidence of a genome shock: the A. suecica genome is colinear with the ancestral genomes; there is no subgenome dominance in expression; and transposon dynamics appear stable. However, we find changes suggesting gradual adaptation to polyploidy. In particular, the A. thaliana subgenome shows upregulation of meiosis-related genes, possibly to prevent aneuploidy and undesirable homeologous exchanges that are observed in synthetic A. suecica, and the A. arenosa subgenome shows upregulation of cyto-nuclear processes, possibly in response to the new cytoplasmic environment of A. suecica, with plastids maternally inherited from A. thaliana. These changes are not seen in synthetic hybrids, and thus are likely to represent subsequent evolution.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
40500 - Other agricultural sciences
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nature Ecology & Evolution
ISSN
2397-334X
e-ISSN
—
Volume of the periodical
5
Issue of the periodical within the volume
10
Country of publishing house
DE - GERMANY
Number of pages
29
Pages from-to
1367-1381,1-14
UT code for WoS article
000686439900004
EID of the result in the Scopus database
2-s2.0-85113199848