All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hunting Strategy and Virion structure of Bacteriophage JBD30 Revealed by Cryo-electron Microscopy

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F22%3A00126453" target="_blank" >RIV/00216224:14740/22:00126453 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hunting Strategy and Virion structure of Bacteriophage JBD30 Revealed by Cryo-electron Microscopy

  • Original language description

    Pseudomonas aeruginosa is a human pathogen, whose treatment is complicated by its frequent antibiotic-resistance. Siphoviridae bacteriophage JBD30 infects and kills bacterium P. aeruginosa, which makes it a potential agent for phage therapy. Here we present the structure of bacteriophage JBD30 virion and its replication strategy, revealed by the combination of cryo-electron microscopy analysis techniques and cryo-electron tomography. The virion of bacteriophage JBD30 is composed of non-enveloped icosahedral capsid, long flexible non-contractile tail and baseplate decorated with tail fibers. The capsid with a diameter of 60 nm is built from major capsid protein organised in T = 7 icosahedral lattice and decorated on three-fold and pseudo-threefold axis with trimers of minor capsid protein. In one vertex of the capsid, the penton of major capsid protein is replaced by dodecameric portal. The portal complex forms an interface between the capsid and 180 nm long tail. The tail is built from 44 hexameric discs of major tail protein. Distal tail protein trimer follows-up the last tail disc and forms an attachment site for the long tail fibers. The baseplate is terminated with a tripod complex of receptor binding protein trimers. Using cryo-electron tomography we followed the infection process of P. aeruginosa by JBD30 phage from attachment to bacterial cell, to the production of new phage progeny and host cell lysis. Bacteriophage JBD30 uses its long tail fibres for binding to P. aeruginosa pili type IV. After attachment to pili, the virion either diffuses or is pulled towards the cellular surface, where it irreversibly binds by its receptor binding proteins. Afterwards, the phage punctures the outer cellular membrane, degrades the peptidoglycan layer and injects its DNA into host cell. New phage progeny is released approximately after 80 minutes post infection. The combination of cryo-electron microscopy methods allowed us, to propose the mechanism of key stages of phage infection and describe it at molecular level.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10607 - Virology

Result continuities

  • Project

    <a href="/en/project/LL1906" target="_blank" >LL1906: Phage replication in bacterial biofilm</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů