All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

DECIPHERING THE FUNCTIONALITY OF THE UNSTRUCTURED N-TERMINAL DOMAIN OF THE BACTERIAL INITIATION FACTOR 2

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F23%3A00132136" target="_blank" >RIV/00216224:14740/23:00132136 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.ccsss.cz/index.php/ccsss/issue/view/41" target="_blank" >http://www.ccsss.cz/index.php/ccsss/issue/view/41</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    DECIPHERING THE FUNCTIONALITY OF THE UNSTRUCTURED N-TERMINAL DOMAIN OF THE BACTERIAL INITIATION FACTOR 2

  • Original language description

    Compartmentalization is a hallmark of living cells that allows them to perform complex tasks by dynamically coordinating matter and energy fluxes in space and time. This compartmentalization of membrane-less organelles in prokaryotes is driven by Liquid-Liquid Phase Separation (LLPS). Studies have shown LLPS to be a major driving force in the subcellular organization of bacterial cells. These biomolecular condensates are comprised of proteins that are generally rich in intrinsically disordered regions (IDRs). In prokaryotes, translation Initiation Factor 2 (IF-2) is a GTPase that binds the initiator tRNA and catalyzes the ribosomal subunit joining to form the elongation competent 70S complex. A large portion of the N-terminal domain of IF-2 contains IDRs, making the protein a favorable candidate to form LLPS. Additionally, due to the dynamic behaviour of the N-terminus of IF-2 the structure of the full-length protein is still missing. Therefore, the mechanistic understanding of its functional role is quite elusive, especially in ribosomal subunit joining. Here, we present biochemical evidence that IF-2 can phase separate under specific conditions. The IF-2 LLPS formation can provide deeper insight into compartmentalized translation machinery in bacterial cells. We also use timeresolved cryo-EM to capture intermediate states of the initiation process using native GTP and its non-hydrolysable analogue GDPCP. Here, the main goal is to gain structural insight about the disorded N-terminus of IF-2 and its role in ribosomal subunit joining.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10608 - Biochemistry and molecular biology

Result continuities

  • Project

    <a href="/en/project/LX22NPO5103" target="_blank" >LX22NPO5103: National Institute of Virology and Bacteriology</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů