Multiple factors modulating the formation of toroidal membrane pores
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F23%3A00132221" target="_blank" >RIV/00216224:14740/23:00132221 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Multiple factors modulating the formation of toroidal membrane pores
Original language description
Pore formation and stability in cell membranes play a pivotal role in drug delivery into cells such as bacteria1. Particularly, the stability of toroidal pores — pores with a doughnut-shaped geometry where lipid headgroups cover the pore rim — is primarily regulated by the rim-associated line tension. While molecular simulations are a known tool for screening drug candidates, they can also forecast the potential of new therapeutics to modulate line tension. However, not all models (known as force fields) tailored for biological computer simulations accurately capture the line tension of lipid membrane compositions characteristic of mammalian and bacterial cells. This deficiency eventually hinders the drug design. In this work, we investigate the use of molecular dynamics simulations for the rational design of novel molecules, including antimicrobial peptides known to form pores and translocate across cell membranes3. We first delve into factors like lipid composition, which varies between mammalian and bacterial cells, and the unique solution environment, elaborating on their impact on the line tension. Furthermore, we describe the complete process of toroidal pore formation, its molecular origins, and showcase methods to assess the pore formation by computer simulations using available simulation models.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10200 - Computer and information sciences
Result continuities
Project
<a href="/en/project/LX22NPO5103" target="_blank" >LX22NPO5103: National Institute of Virology and Bacteriology</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů