All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multiple factors modulating the formation of toroidal membrane pores

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F23%3A00132221" target="_blank" >RIV/00216224:14740/23:00132221 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multiple factors modulating the formation of toroidal membrane pores

  • Original language description

    Pore formation and stability in cell membranes play a pivotal role in drug delivery into cells such as bacteria1. Particularly, the stability of toroidal pores — pores with a doughnut-shaped geometry where lipid headgroups cover the pore rim — is primarily regulated by the rim-associated line tension. While molecular simulations are a known tool for screening drug candidates, they can also forecast the potential of new therapeutics to modulate line tension. However, not all models (known as force fields) tailored for biological computer simulations accurately capture the line tension of lipid membrane compositions characteristic of mammalian and bacterial cells. This deficiency eventually hinders the drug design. In this work, we investigate the use of molecular dynamics simulations for the rational design of novel molecules, including antimicrobial peptides known to form pores and translocate across cell membranes3. We first delve into factors like lipid composition, which varies between mammalian and bacterial cells, and the unique solution environment, elaborating on their impact on the line tension. Furthermore, we describe the complete process of toroidal pore formation, its molecular origins, and showcase methods to assess the pore formation by computer simulations using available simulation models.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

    <a href="/en/project/LX22NPO5103" target="_blank" >LX22NPO5103: National Institute of Virology and Bacteriology</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů