All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Optimizing properties of translocation-enhancing transmembrane proteins

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F24%3A00136035" target="_blank" >RIV/00216224:14740/24:00136035 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0006349524002716?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0006349524002716?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.bpj.2024.04.009" target="_blank" >10.1016/j.bpj.2024.04.009</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Optimizing properties of translocation-enhancing transmembrane proteins

  • Original language description

    Cell membranes act as semi-permeable barriers, often restricting the entry of large or hydrophilic molecules. Nonetheless, certain amphiphilic molecules, such as antimicrobial and cell-penetrating peptides, can cross these barriers. In this study, we demonstrate that specific properties of transmembrane proteins/peptides can enhance membrane permeation of amphiphilic peptides. Using coarse-grained molecular dynamics with free-energy calculations, we identify key translocation-enhancing attributes of transmembrane proteins/peptides: a continuous hydrophilic patch, charged residues preferably in the membrane center, and aromatic hydrophobic residues. By employing both coarse-grained and atomistic simulations, complemented by experimental validation, we show that these properties not only enhance peptide translocation but also speed up lipid flip-flop. The enhanced flip-flop reinforces the idea that proteins such as scramblases and insertases not only share structural features but also operate through identical biophysical mechanisms enhancing the insertion and translocation of amphiphilic molecules. Our insights offer guidelines for the designing of translocation-enhancing proteins/peptides that could be used in medical and biotechnological applications.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10610 - Biophysics

Result continuities

  • Project

    <a href="/en/project/LX22NPO5103" target="_blank" >LX22NPO5103: National Institute of Virology and Bacteriology</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Biophysical Journal

  • ISSN

    0006-3495

  • e-ISSN

    1542-0086

  • Volume of the periodical

    123

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    1240-1252

  • UT code for WoS article

    001300570200001

  • EID of the result in the Scopus database

    2-s2.0-85190953360