All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Uniparental silencing of 5S rRNA genes in plant allopolyploids - insights from Cardamine (Brassicaceae)

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F24%3A00137100" target="_blank" >RIV/00216224:14740/24:00137100 - isvavai.cz</a>

  • Result on the web

    <a href="https://onlinelibrary.wiley.com/doi/10.1111/tpj.16850" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1111/tpj.16850</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/tpj.16850" target="_blank" >10.1111/tpj.16850</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Uniparental silencing of 5S rRNA genes in plant allopolyploids - insights from Cardamine (Brassicaceae)

  • Original language description

    While the phenomenon of uniparental silencing of 35S rDNA in interspecific hybrids and allopolyploids is well documented, there is a notable absence of information regarding whether such silencing extends to the 5S RNA component of ribosomes. To address this gap in knowledge, we analyzed the 5S and 35S rDNA expression in Cardamine (Brassicaceae) allopolyploids, namely C. x insueta (2n = 3x = 24, genome composition RRA), C. flexuosa (2n = 4x = 32, AAHH), and C. scutata (2n = 4x = 32, PPAA) which share a common diploid ancestor (AA). We employed high-throughput sequencing of transcriptomes and genomes and phylogenetic analyses of 5S rRNA variants. The genomic organization of rDNA was further scrutinized through clustering and fluorescence in situ hybridization. In the C. x insueta allotriploid, we observed uniparental dominant expression of 5S and 35S rDNA loci. In the C. flexuosa and C. scutata allotetraploids, the expression pattern differed, with the 35S rDNA being expressed from the A subgenome, whereas the 5S rDNA was expressed from the partner subgenome. Both C. flexuosa and C. scutata but not C. x insueta showed copy and locus number changes. We conclude that in stabilized allopolyploids, transcription of ribosomal RNA components occurs from different subgenomes. This phenomenon appears to result in the formation of chimeric ribosomes comprising rRNA molecules derived from distinct parental origins. We speculate that the interplay of epigenetic silencing and rDNA rearrangements introduces an additional layer of variation in multimolecule ribosomal complexes, potentially contributing to the evolutionary success of allopolyploids.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10611 - Plant sciences, botany

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Plant Journal

  • ISSN

    0960-7412

  • e-ISSN

    1365-313X

  • Volume of the periodical

    119

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

    1313-1326

  • UT code for WoS article

    001239552800001

  • EID of the result in the Scopus database

    2-s2.0-85195293169