Structure-based prediction of T cell receptor recognition of unseen epitopes using TCRen
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F24%3A00139165" target="_blank" >RIV/00216224:14740/24:00139165 - isvavai.cz</a>
Result on the web
<a href="https://www.nature.com/articles/s43588-024-00653-0" target="_blank" >https://www.nature.com/articles/s43588-024-00653-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s43588-024-00653-0" target="_blank" >10.1038/s43588-024-00653-0</a>
Alternative languages
Result language
angličtina
Original language name
Structure-based prediction of T cell receptor recognition of unseen epitopes using TCRen
Original language description
T cell receptor (TCR) recognition of foreign peptides presented by major histocompatibility complex protein is a major event in triggering the adaptive immune response to pathogens or cancer. The prediction of TCR-peptide interactions has great importance for therapy of cancer as well as infectious and autoimmune diseases but remains a major challenge, particularly for novel (unseen) peptide epitopes. Here we present TCRen, a structure-based method for ranking candidate unseen epitopes for a given TCR. The first stage of the TCRen pipeline is modeling of the TCR-peptide-major histocompatibility complex structure. Then a TCR-peptide residue contact map is extracted from this structure and used to rank all candidate epitopes on the basis of an interaction score with the target TCR. Scoring is performed using an energy potential derived from the statistics of TCR-peptide contact preferences in existing crystal structures. We show that TCRen has high performance in discriminating cognate versus unrelated peptides and can facilitate the identification of cancer neoepitopes recognized by tumor-infiltrating lymphocytes.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
NATURE COMPUTATIONAL SCIENCE
ISSN
2662-8457
e-ISSN
2662-8457
Volume of the periodical
4
Issue of the periodical within the volume
7
Country of publishing house
GB - UNITED KINGDOM
Number of pages
15
Pages from-to
1-15
UT code for WoS article
001268935300002
EID of the result in the Scopus database
2-s2.0-85198063639