All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Structural analysis of the SARS-CoV-2 methyltransferase complex involved in RNA cap creation bound to sinefungin

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A90127%2F20%3A00139241" target="_blank" >RIV/00216224:90127/20:00139241 - isvavai.cz</a>

  • Alternative codes found

    RIV/61388963:_____/20:00531271

  • Result on the web

    <a href="https://www.nature.com/articles/s41467-020-17495-9" target="_blank" >https://www.nature.com/articles/s41467-020-17495-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41467-020-17495-9" target="_blank" >10.1038/s41467-020-17495-9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Structural analysis of the SARS-CoV-2 methyltransferase complex involved in RNA cap creation bound to sinefungin

  • Original language description

    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic. 2-O-RNA methyltransferase (MTase) is one of the enzymes of this virus that is a potential target for antiviral therapy as it is crucial for RNA cap formation; an essential process for viral RNA stability. This MTase function is associated with the nsp16 protein, which requires a cofactor, nsp10, for its proper activity. Here we show the crystal structure of the nsp10-nsp16 complex bound to the pan-MTase inhibitor sinefungin in the active site. Our structural comparisons reveal low conservation of the MTase catalytic site between Zika and SARS-CoV-2 viruses, but high conservation of the MTase active site between SARS-CoV-2 and SARS-CoV viruses; these data suggest that the preparation of MTase inhibitors targeting several coronaviruses - but not flaviviruses - should be feasible. Together, our data add to important information for structure-based drug discovery. p id=Par SARS-CoV-2 expresses a 2 ' -O RNA methyltransferase (MTase) that is involved in the viral RNA cap formation and therefore a target for antiviral therapy. Here the authors provide the structure of nsp10-nsp16 with the panMTase inhibitor sinefungin and report that the development of MTase inhibitor therapies that target multiple coronoaviruses is feasible.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30300 - Health sciences

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nature Communications

  • ISSN

    2041-1723

  • e-ISSN

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    7

  • Pages from-to

    1-7

  • UT code for WoS article

    000556360300010

  • EID of the result in the Scopus database

    2-s2.0-85090483661