All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Crystal growth from mechanically induced defects

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25310%2F17%3A39902700" target="_blank" >RIV/00216275:25310/17:39902700 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s10973-016-5529-0" target="_blank" >http://dx.doi.org/10.1007/s10973-016-5529-0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10973-016-5529-0" target="_blank" >10.1007/s10973-016-5529-0</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Crystal growth from mechanically induced defects

  • Original language description

    For the first time, infrared microscopy was used to directly confirm the presence of crystallites originating from mechanically induced defects. Differential scanning calorimetry and infrared microscopy were used to study crystallization behavior of the GeTe4 glass. Both non-isothermal and isothermal DSC crystallization data were deconvoluted by state-of-the-art methods, and the identified sub-processes were described in terms of appropriate kinetic models. While the bulk samples showed zero-order (F0) crystallization kinetics, the GeTe4 powders exhibited complex kinetic behavior describable by competing Johnson-Mehl-Avrami and autocatalytic crystallization mechanisms. The concept of crystallization from mechanically induced defects was used to explain the difference in the kinetic behavior of bulk and powdered materials. Microscopic observation of two types of crystallites being present in a partially crystallized powder grain corresponds well to the occurrence of two crystallization mechanisms identified for the DSC data. The zero-order crystallization kinetics found for the DSC data of bulk samples was verified by microscopic crystal growth rate measurements.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20300 - Mechanical engineering

Result continuities

  • Project

    <a href="/en/project/GAP106%2F11%2F1152" target="_blank" >GAP106/11/1152: Reversible crystallization and structural relaxation in amorphous materials used for phase change recording</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Thermal Analysis and Calorimetry

  • ISSN

    1388-6150

  • e-ISSN

  • Volume of the periodical

    127

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    10

  • Pages from-to

    799-808

  • UT code for WoS article

    000392337000088

  • EID of the result in the Scopus database

    2-s2.0-84970016901