Investigation of different thermal analysis techniques to determine the decomposition kinetics of epsilon-2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane with reduced sensitivity and its cured PBX
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25310%2F17%3A39911114" target="_blank" >RIV/00216275:25310/17:39911114 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jaap.2017.05.020" target="_blank" >http://dx.doi.org/10.1016/j.jaap.2017.05.020</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jaap.2017.05.020" target="_blank" >10.1016/j.jaap.2017.05.020</a>
Alternative languages
Result language
angličtina
Original language name
Investigation of different thermal analysis techniques to determine the decomposition kinetics of epsilon-2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane with reduced sensitivity and its cured PBX
Original language description
ε-2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) is considered the most powerful explosive which has practical application. A reduced sensitivity of CL-20 (RS-CL20) has been obtained by a recrystallization method. In this work, different thermal analysis techniques were investigated to determine the decomposition kinetics RS-CL20 and its polyurethane composite (RS-CL20/HTPB). The polyurethane matrix was based on hydroxyl-terminated polybutadiene (HTPB) and other additives cured by hexamethylene diisocyanate (HMDI). The thermal behavior of the studied samples was studied by Differential Scanning Calorimetry (DSC). The decomposition kinetics were obtained from the measurements of Thermogravimetry analysis (TGA) and Vacuum Stability Test (VST). The isoconversional (model-free) methods which are Kissinger method, Ozawa, Flynn, and Wall (OFW) method and Kissinger–Akahira–Sunose (KAS) method were used. Furthermore, the Advanced Kinetics and Technology Solution (AKTS) software was used to determine the kinetic parameters of the studied samples in order to provide a comparison. It was concluded that the RS-CL20/HTPB has lower decomposition temperature than pure RS-CL20. The polyurethane matrix has obvious effect on decreasing the activation energy of pure RS-CL20. Activation energies calculated by the three different methods are in the same range of AKTS software results. Successfully, VST results were investigated to predict the kinetic parameters of RS-CL20 and its PBX.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Analytical and Applied Pyrolysis
ISSN
0165-2370
e-ISSN
—
Volume of the periodical
126
Issue of the periodical within the volume
July
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
8
Pages from-to
267-274
UT code for WoS article
000407984300029
EID of the result in the Scopus database
2-s2.0-85020162447