All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Removal of micropollutants from water by commercially available nanofiltration membranes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25310%2F20%3A39916287" target="_blank" >RIV/00216275:25310/20:39916287 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0048969720309852" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0048969720309852</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.scitotenv.2020.137474" target="_blank" >10.1016/j.scitotenv.2020.137474</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Removal of micropollutants from water by commercially available nanofiltration membranes

  • Original language description

    The current work is focused on the use of nanofiltration in the removal of micropollutants, specially drugs (diclofenac and ibuprofen) and heavy metal (zinc sulphate and zinc nitrate) from wastewater. The commercially available nanofiltration (NF) membranes (AFC 80, AFC 40, AFC 30) were characterised by demineralised water and the ability of the membranes to reject drugs and zinc(II) was subsequently examined. The influence of the operating conditions on the rejection and the permeate flux was evaluated. The operating conditions tested included the transmembrane pressure (5-30 bar); the effect of the feed concentration on the heavy metals rejection (50-200 mg L-1); the effect of ionic strength on the diclofenac and ibuprofen rejection (0-10 g L-1 NaCl) and the volumetric flow rate (5-15 L min(-1)). It has been shown that increasing the transmembrane pressure increases the intensity of the permeate flow and rejection. Drugs rejection also increases with increasing bulk feed flow rates; however, decreases with increasing ionic strength (NaCl concentration in feed). Experimental data indicated that concentration polarisation existed in the membrane separation process. The stable permeation flux and high rejection of drugs and heavy metals indicated the potential of NF for the recovery of drugs and zinc(II) from wastewater.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20402 - Chemical process engineering

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Science of the Total Environment

  • ISSN

    0048-9697

  • e-ISSN

  • Volume of the periodical

    720

  • Issue of the periodical within the volume

    June

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    11

  • Pages from-to

    137474

  • UT code for WoS article

    000525736600121

  • EID of the result in the Scopus database

    2-s2.0-85081011317