Hydrodechlorination of Different Chloroaromatic Compounds at Room Temperature and Ambient Pressure-Differences in Reactivity of Cu- and Ni-Based Al Alloys in an Alkaline Aqueous Solution
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25310%2F20%3A39916603" target="_blank" >RIV/00216275:25310/20:39916603 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2073-4344/10/9/994" target="_blank" >https://www.mdpi.com/2073-4344/10/9/994</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/catal10090994" target="_blank" >10.3390/catal10090994</a>
Alternative languages
Result language
angličtina
Original language name
Hydrodechlorination of Different Chloroaromatic Compounds at Room Temperature and Ambient Pressure-Differences in Reactivity of Cu- and Ni-Based Al Alloys in an Alkaline Aqueous Solution
Original language description
It is well known that the hydrodechlorination (HDC) of chlorinated aromatic contaminants in aqueous effluents enables a significant increase in biodegradability. HDC consumes a low quantity of reactants producing corresponding non-chlorinated and much more biodegradable organic compounds. Two commonly used precious metals free Al alloys (Raney Al-Ni and Devarda's Al-Cu-Zn) were compared in reductive action in an alkaline aqueous solution. Raney Al-Ni alloy was examined as a universal and extremely effective HDC agent in a diluted aqueous NaOH solution. The robustness of Raney Al-Ni activity is illustrated in the case of HDC of polychlorinated aromatic compounds mixture in actual waste water. In contrast, Devarda's Al-Cu-Zn alloy was approved as much less active for HDC of the tested chlorinated aromatic compounds, but with a surprisingly high selectivity on cleavage of C-Cl bonds in the meta and sometimes the ortho position in chlorinated aniline and sometimes chlorinated phenol structures. The reaction of both tested alloys with chlorinated aromatic compounds in the aqueous NaOH solution is accompanied by dissolution of aluminum. Dissolved Al in the alkaline HDC reaction mixture is very useful for subsequent treatment of HDC products by coagulation and flocculation of Al(OH)(3) caused by simple neutralization of the alkaline aqueous phase after the HDC reaction.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10511 - Environmental sciences (social aspects to be 5.7)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Catalysts
ISSN
2073-4344
e-ISSN
—
Volume of the periodical
10
Issue of the periodical within the volume
9
Country of publishing house
CH - SWITZERLAND
Number of pages
21
Pages from-to
994
UT code for WoS article
000581326700001
EID of the result in the Scopus database
2-s2.0-85093883743