A new insight into the energetic co-agglomerate structures of attractive nitramines
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25310%2F21%3A39917412" target="_blank" >RIV/00216275:25310/21:39917412 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/abs/pii/S1385894721020581?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S1385894721020581?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cej.2021.130472" target="_blank" >10.1016/j.cej.2021.130472</a>
Alternative languages
Result language
angličtina
Original language name
A new insight into the energetic co-agglomerate structures of attractive nitramines
Original language description
A new method of atmospheric co-agglomeration of energetic micro-particles has been applied to the preparation of the co-agglomerates of 1,3,5-trinitrobenzene-2,4-diamine (DATB) with 1,3,5-trinitro-1,3,5-triazine (RDX), 1,3,5,7-tetranitro-1,3,5,7-tetraazoctane (HMX), cis-1,3,4,6-tetranitrooctahydroimidazo[4,5–d]imidazole (BCHMX) or 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12- hexaazaisowurtzitane (CL-20). The possible benefits of this method also for the alone production technology of the used nitramines are mentioned. Raman, FTIR and PXRD techniques have proven that resulting co-agglomerates (CACs) are co-crystals (CCs), where HMX is presented in its ȏ-modification and CL-20 in its ß-modification. Thermal analyses of these CCs have shown that the stability has increased in the BCHMX/DATB and decreased in the other CCs prepared. The impact sensitivity has decreased in the RDX and HMX CCs. In BCHMX CCs, this decrease is very low. In the case of ß-CL-20/DATB, its sensitivity is high; this increase is also explaineds in the context of impact sensitivity of a “common” quality of CL-20 in general. Attention is also paid to the relationships between thermochemical, performance- and impact sensitivity characteristics in correlation with some Raman and FTIR outputs, confirming the formation of cocrystals during co-agglomeration. All these mentioned relationships represent a new insight on the co-crystals investigation. The density of the co-crystals prepared exceeds 99% of the theoretical maximum density of the starting nitramines. Their performance is higher than would correspond to a simple calculation based on the percentage of individual components.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Chemical Engineering Journal
ISSN
1385-8947
e-ISSN
—
Volume of the periodical
420
Issue of the periodical within the volume
September
Country of publishing house
CH - SWITZERLAND
Number of pages
14
Pages from-to
130472
UT code for WoS article
000663675800003
EID of the result in the Scopus database
2-s2.0-85108697127