All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Towards roll-to-roll printed batteries based on organic electrodes for printed electronics applications

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25310%2F21%3A39918677" target="_blank" >RIV/00216275:25310/21:39918677 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216305:26220/21:PU141813

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/abs/pii/S2352152X21004199" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S2352152X21004199</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.est.2021.102680" target="_blank" >10.1016/j.est.2021.102680</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Towards roll-to-roll printed batteries based on organic electrodes for printed electronics applications

  • Original language description

    There is a growing interest in smart packaging applications and small IoT devices realized as printed electronic devices. Because of their electrical nature, these printed devices require small rechargeable energy sources for their repeatable functionality. For these reasons, the printing of rechargeable batteries alongside the main printed electronics features is welcome, especially if it is realized by the roll-to-roll (R2R) process. A reliable R2R printing process is an advantage and it is a solution overcoming technology difficulties related with the conventional approach of bonding pouch cells to these devices. R2R printing process allows battery manufacturing in the same printing line, at the same substrate, with proper shape and required capacity. Because most of the printed electronic devices are manufactured by R2R printing processes we present a study that is focused on the development of electrode materials towards fully R2R printed secondary batteries based on easily accessible materials and printed by robust and scalable technology. We demonstrate a fully R2R printed secondary battery with open-circuit voltage (OCV) higher than 2.0 V where an organic-based anode and a cathode without Co and Ni are used. The R2R printed secondary battery could be assembled at ambient conditions, which is important for the development of a cheap industrial R2R manufacturing process without inert atmosphere requirements. The R2R printed battery assembled at ambient conditions provides 100 cycles with a capacity of over 50 mAh/g. In the presented study, it was demonstrated that printed PAQS electrodes could be used also in the Na-ion batteries with a capacity of over 120 mAh/g.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Energy Storage

  • ISSN

    2352-152X

  • e-ISSN

    2352-152X

  • Volume of the periodical

    40

  • Issue of the periodical within the volume

    August

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    9

  • Pages from-to

    102680

  • UT code for WoS article

    000674583000009

  • EID of the result in the Scopus database

    2-s2.0-85099713253