All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Indomethacin: The Interplay between Structural Relaxation, Viscous Flow and Crystal Growth

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25310%2F22%3A39919524" target="_blank" >RIV/00216275:25310/22:39919524 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1420-3049/27/17/5668" target="_blank" >https://www.mdpi.com/1420-3049/27/17/5668</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/molecules27175668" target="_blank" >10.3390/molecules27175668</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Indomethacin: The Interplay between Structural Relaxation, Viscous Flow and Crystal Growth

  • Original language description

    Non-isothermal differential scanning calorimetry (DSC) was used to study the influences of particle size (d(aver)) and heating rate (q(+)) on the structural relaxation, crystal growth and decomposition kinetics of amorphous indomethacin. The structural relaxation and decomposition processes exhibited d(aver)-independent kinetics, with the q(+) dependences based on the apparent activation energies of 342 and 106 kJ center dot mol(-1), respectively. The DSC-measured crystal growth kinetics played a dominant role in the nucleation throughout the total macroscopic amorphous-to-crystalline transformation: the change from the zero-order to the autocatalytic mechanism with increasing q(+), the significant alteration of kinetics, with the storage below the glass transition temperature, and the accelerated crystallization due to mechanically induced defects. Whereas slow q(+) led to the formation of the thermodynamically stable gamma polymorph, fast q(+) produced a significant amount of the metastable alpha polymorph. Mutual correlations between the macroscopic and microscopic crystal growth processes, and between the viscous flow and structural relaxation motions, were discussed based on the values of the corresponding activation energies. Notably, this approach helped us to distinguish between particular crystal growth modes in the case of the powdered indomethacin materials. Ediger&apos;s decoupling parameter was used to quantify the relationship between the viscosity and crystal growth. The link between the cooperativity of structural domains, parameters of the Tool-Narayanaswamy-Moynihan relaxation model and microscopic crystal growth was proposed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10401 - Organic chemistry

Result continuities

  • Project

    <a href="/en/project/LM2018103" target="_blank" >LM2018103: Center of Materials and Nanotechnologies - Research Infrastructure</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Molecules

  • ISSN

    1420-3049

  • e-ISSN

    1420-3049

  • Volume of the periodical

    27

  • Issue of the periodical within the volume

    17

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    23

  • Pages from-to

    "5668-1"-"5668-23"

  • UT code for WoS article

    000851900500001

  • EID of the result in the Scopus database

    2-s2.0-85137846656