All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Understanding of Intramolecular Charge Transfer Dynamics of a Push-Pull Dimethylamino-phenylethynylphenyl-dicyanoimidazole by Steady-State and Ultrafast Spectroscopic Studies

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25310%2F23%3A39920348" target="_blank" >RIV/00216275:25310/23:39920348 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubs.acs.org/doi/10.1021/acs.jpcc.2c08320" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jpcc.2c08320</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jpcc.2c08320" target="_blank" >10.1021/acs.jpcc.2c08320</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Understanding of Intramolecular Charge Transfer Dynamics of a Push-Pull Dimethylamino-phenylethynylphenyl-dicyanoimidazole by Steady-State and Ultrafast Spectroscopic Studies

  • Original language description

    Photophysical behaviors of D-pi-A compound 2-{4-[4-(N,N-dimethylamino)phenylethynyl]phenyl-1-methyl-1H-imidazole-4,5-dicarbonitrile (DMAP-PIDCN) were explored using steady-state absorption, fluorescence emission, and femtosecond time-resolved absorption and emission spectroscopic techniques at room temperature along with computational time-dependent density functional theory (TD-DFT) calculation. The spectroscopic studies were carried out in different solvents of varying polarities including binary solvent mixtures. The role of the solvent polarity, viscosity, and temperature on the relaxation mechanism of DMAPPIDCN is disclosed. The observed steady-state and time-resolved spectroscopic features were attributed to intramolecular charge transfer (ICT) dynamics. The ICT in DMAPPIDCN is rationalized to a sequential twisted motion of both N(CH3)2 and whole N,N-dimethylaminophenyl moieties around the molecular axis interconnecting the adjacent imidazolephenyl moiety leading to the TICT1 and TICT2 (sigma*) states. The increased solvent polarity affected mostly the fluorescence emission spectra pointing to a significant increase in the excited state dipole moment. This result clearly reveals formation of the TICT2 (sigma*) involving efficient charge transfer from the (N,N-dimethylamino)phenyl (DMAP) donor to the phenyl-1-methyl-1H-imidazole-dicarbonitrile (PIDCN) acceptor in the excited state in a polar environment. In the TICT2 (sigma*) state, the planes of electron-withdrawing and electron-donating moieties are perpendicular with the angle (DMAP)C-CtriplebondC being 141.1°. This nonplanar arrangement accounts for the observed large Stokes shift. Time-resolved fluorescence spectroscopic studies unveil the excited state relaxation processes confirming the increase in the nonradiative decay rate in aprotic medium with increase in the solvent dielectric constants. Femtosecond transient spectroscopic studies unambiguously confirmed the existence of well separated LE and TICT states and their ensuing kinetics in polar medium. In nonpolar solvents, DMAPPIDCN shows strong fluorescence which emits from the LE (pipi*) state, whereas in polar solvents, formation of two consecutive TICT states occurs from the LE (pipi*) in a sub picosecond to few picosecond time domain depending on polarity of the solvents and the non-radiative decay from the TICT states.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10401 - Organic chemistry

Result continuities

  • Project

    <a href="/en/project/GA22-14988S" target="_blank" >GA22-14988S: DicyanoPyraZine: Versatile Tool for Photoredox Catalysis</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Physical Chemistry C

  • ISSN

    1932-7447

  • e-ISSN

    1932-7455

  • Volume of the periodical

    127

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    17

  • Pages from-to

    4724-4740

  • UT code for WoS article

    000963058600001

  • EID of the result in the Scopus database

    2-s2.0-85148909090