All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Synthesis, photophysics and two-photon absorption of imidazole-centred tripodal chromophores

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25310%2F24%3A39921720" target="_blank" >RIV/00216275:25310/24:39921720 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubs.rsc.org/en/content/articlelanding/2024/cp/d4cp02227k" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2024/cp/d4cp02227k</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1039/d4cp02227k" target="_blank" >10.1039/d4cp02227k</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Synthesis, photophysics and two-photon absorption of imidazole-centred tripodal chromophores

  • Original language description

    Tripodal push-pull chromophores with D-(pi-A)3 arrangement were synthesized using 1-methyl-2,4,5-triphenyl-1H-imidazole as a central electron donor, and their thermal, electrochemical, photophysical and non-linear optical properties were studied and corroborated with quantum-chemical calculations. Their facile synthesis involved Suzuki-Miyaura and Knoevenagel reactions, allowing the installation of various peripheral electron acceptors such as formyl, cyano, ester, trifluoromethyl and more complex moieties such as malonic/acetic acid derivatives, indan-1,3-dione and rhodanine. All phenyl rings appended at the central imidazole core were more or less twisted depending on the peripheral substitution. Although imidazole undergoes reversible one-electron oxidation, peripheral acceptors are reduced irreversibly in a multi-electron process. This behaviour is further seen as a variation of the LUMO, while the HOMO remained almost unaltered across the whole series. TD-DFT calculations revealed centrifugal charge transfer from the central imidazole to all C2, C4 and C5 branches occupied by the LUMO, LUMO+1 and LUMO+2. The HOMO-LUMO gap is tuneable within the range of 3.55-2.31 eV, while the longest-wavelength absorption/emission maxima were found within the broad range of 304-448/393-612 nm. Although the absorption spectra are solvent-independent, the emission depends strongly on the solvent polarity and the electron-withdrawing power of the peripheral acceptors. Extended chromophores with complex electron acceptors were investigated as two-photon absorbers, revealing relatively good cross-section values of up to 521 GM and a figure-of-merit (Phi F x delta 2PA) of around 190 GM. Tripodal imidazole-centred chromophores bearing peripheral acceptors were prepared and investigated. The observed centrifugal ICT results in tuneable (nonlinear) optical properties and two-photon absorption cross-sections of up to 521 GM.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10401 - Organic chemistry

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physical Chemistry Chemical Physics

  • ISSN

    1463-9076

  • e-ISSN

    1463-9084

  • Volume of the periodical

    26

  • Issue of the periodical within the volume

    31

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    11

  • Pages from-to

    20908-20918

  • UT code for WoS article

    001274988000001

  • EID of the result in the Scopus database

    2-s2.0-85199717213