Municipal Creditworthiness Modelling by Kohonen´s Self-organizing Feature Maps and LVQ Neural Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F08%3A00007278" target="_blank" >RIV/00216275:25410/08:00007278 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Municipal Creditworthiness Modelling by Kohonen´s Self-organizing Feature Maps and LVQ Neural Networks
Original language description
The paper presents the design of municipal creditworthiness parameters. Further, a model is designed based on Learning Vector Quantization neural networks for municipal creditworthiness classification. The model is composed of Kohonen?s Self-organizing Feature Maps (unsupervised learning) whose outputs represent the input of the Learning Vector Quantization neural networks (supervised learning).
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
AE - Management, administration and clerical work
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA402%2F08%2F0849" target="_blank" >GA402/08/0849: Model of Sustainable Regional Development Management</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Artificial Intelligence and Soft Computing ? ICAISC 2008: 9th International Conference Zakopane, Poland, June 22-26, 2008, Proceedings
ISBN
978-3-540-69572-1
ISSN
—
e-ISSN
—
Number of pages
10
Pages from-to
—
Publisher name
Springer
Place of publication
Dordrecht
Event location
Zakopane, Polsko
Event date
Jun 26, 2008
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—