Municipal Revenue Prediction by Support Vector Machine Ensembles
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F10%3A39881985" target="_blank" >RIV/00216275:25410/10:39881985 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Municipal Revenue Prediction by Support Vector Machine Ensembles
Original language description
Fiscal stress has forced municipalities to pay increasing attention to the importance of revenue prediction. Currently, econometric models and expert opinions are used for municipal revenue prediction. In this paper we present a design of support vectormachine ensembles for the prediction of municipal revenue. Linear regression model and feed-forward neural network ensembles are used as benchmark methods. We prove that stochastic gradient boosting outperforms the other methods when creating SVM ensembles for this regression problem. Further, bagging shows best performance for feed-forward neural network ensembles, and dagging is preferable for linear regression model ensembles.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
AE - Management, administration and clerical work
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Latest Trends on Computers
ISBN
978-960-474-201-1
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
—
Publisher name
WSEAS Press
Place of publication
Atény
Event location
Corfu
Event date
Jul 23, 2010
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—