The Sierpiński Triangle and its Coordinate Functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F10%3A39882031" target="_blank" >RIV/00216275:25410/10:39882031 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
The Sierpiński Triangle and its Coordinate Functions
Original language description
The famous fractal set called the Sierpiński triangle was introduced as a plane curve every point of which is the point of ramification. Since it satisfies the Jordan definition of a curve, it can be represented by two continuous coordinate functions ofa parameter. The coordinate functions are constructed by iterations of a system of linear transformations in the complex plane.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Scientific Papers of the University of Pardubice, Series D, Faculty of Economics and Administration
ISSN
1211-555X
e-ISSN
—
Volume of the periodical
15
Issue of the periodical within the volume
17
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
5
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—