All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Prediction of Air Quality Indices by Neural Networks and Fuzzy Inference Systems - The Case of Pardubice Microregion

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F13%3A39899273" target="_blank" >RIV/00216275:25410/13:39899273 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-642-41013-0_31" target="_blank" >http://dx.doi.org/10.1007/978-3-642-41013-0_31</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-41013-0_31" target="_blank" >10.1007/978-3-642-41013-0_31</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Prediction of Air Quality Indices by Neural Networks and Fuzzy Inference Systems - The Case of Pardubice Microregion

  • Original language description

    This paper presents a design of models for air quality prediction using feed-forward neural networks of perceptron and Takagi-Sugeno fuzzy inference systems. In addition, the sets of input variables are optimized for each air pollutant prediction by genetic algorithms. Based on data measured by the monitoring station of the Pardubice city, the Czech Republic, models are designed to predict air quality indices for each air pollutant separately and consequently, to predict the common air quality index. Considering the root mean squared error, the results show that the compositions of individual prediction models outperform single predictions of common air quality index. Therefore, these models can be applied to obtain more accurate one day ahead predictions of air quality indices.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/TD010130" target="_blank" >TD010130: Regionalization of economic performance indicators in relation to environmental quality</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Engineering Applications of Neural Networks: 14th International Conference, EANN 2013, Halkidiki, Greece, September 13-16, 2013, Proceedings, Part I

  • ISBN

    978-3-642-41012-3

  • ISSN

    1865-0929

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

    302-312

  • Publisher name

    Springer

  • Place of publication

    Heidelberg

  • Event location

    Halkidiki

  • Event date

    Sep 13, 2013

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000345333800031