All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Predicting Financial Distress of Banks Using Random Subspace Ensembles of Support Vector Machines

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F15%3A39899764" target="_blank" >RIV/00216275:25410/15:39899764 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-18476-0_14" target="_blank" >http://dx.doi.org/10.1007/978-3-319-18476-0_14</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-18476-0_14" target="_blank" >10.1007/978-3-319-18476-0_14</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Predicting Financial Distress of Banks Using Random Subspace Ensembles of Support Vector Machines

  • Original language description

    Models for financial distress predictions of banks are increasingly important tools used as early warning signals for the whole banking systems. In this study, a model based on random subspace method is proposed to predict investment/non-investment rating grades of U.S. banks. We show that support vector machines can be effectively used as base learners in the meta-learning model. We argue that both financial and non-financial (sentiment) information are important categories of determinants in financialdistress prediction. We show that this is true for both banks and other companies.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA13-10331S" target="_blank" >GA13-10331S: The role of text information in corporate financial distress prediction models – country-specific and industry-specific approaches</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Artificial Intelligence Perspectives and Applications (CSOC2015)

  • ISBN

    978-3-319-18475-3

  • ISSN

    2194-5357

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    131-140

  • Publisher name

    Springer

  • Place of publication

    Berlin

  • Event location

    Zlín

  • Event date

    Apr 27, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000371407800014