All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Word Categorization of Corporate Annual Reports for Bankruptcy Prediction by Machine Learning Methods

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F15%3A39899766" target="_blank" >RIV/00216275:25410/15:39899766 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-24033-6_14" target="_blank" >http://dx.doi.org/10.1007/978-3-319-24033-6_14</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-24033-6_14" target="_blank" >10.1007/978-3-319-24033-6_14</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Word Categorization of Corporate Annual Reports for Bankruptcy Prediction by Machine Learning Methods

  • Original language description

    The language of company related documents is recognized as being an important indicator of future financial performance. This study aims to extract various word categories from corporate annual reports and examine their effect on bankruptcy prediction. We show that the language used by bankrupt companies is characterized by stronger tenacity, accomplishment, familiarity, present concern, exclusion and denial. Bankrupt companies also use more modal, positive, uncertain and negative language. We used neural networks, support vector machines, decision trees and ensembles of decision trees to predict corporate bankruptcy. The prediction models utilized both financial indicators and word categorizations as input variables. We show that both general dictionary and financial dictionary categories can significantly improve the accuracy of the prediction models.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA13-10331S" target="_blank" >GA13-10331S: The role of text information in corporate financial distress prediction models – country-specific and industry-specific approaches</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Text, Speech, and Dialogue: 18th International Conference, TSD 2015 Proceedings

  • ISBN

    978-3-319-24032-9

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    122-130

  • Publisher name

    Springer

  • Place of publication

    Berlin

  • Event location

    Plzeň

  • Event date

    Sep 14, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000365947800014