Word Categorization of Corporate Annual Reports for Bankruptcy Prediction by Machine Learning Methods
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F15%3A39899766" target="_blank" >RIV/00216275:25410/15:39899766 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-24033-6_14" target="_blank" >http://dx.doi.org/10.1007/978-3-319-24033-6_14</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-24033-6_14" target="_blank" >10.1007/978-3-319-24033-6_14</a>
Alternative languages
Result language
angličtina
Original language name
Word Categorization of Corporate Annual Reports for Bankruptcy Prediction by Machine Learning Methods
Original language description
The language of company related documents is recognized as being an important indicator of future financial performance. This study aims to extract various word categories from corporate annual reports and examine their effect on bankruptcy prediction. We show that the language used by bankrupt companies is characterized by stronger tenacity, accomplishment, familiarity, present concern, exclusion and denial. Bankrupt companies also use more modal, positive, uncertain and negative language. We used neural networks, support vector machines, decision trees and ensembles of decision trees to predict corporate bankruptcy. The prediction models utilized both financial indicators and word categorizations as input variables. We show that both general dictionary and financial dictionary categories can significantly improve the accuracy of the prediction models.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-10331S" target="_blank" >GA13-10331S: The role of text information in corporate financial distress prediction models – country-specific and industry-specific approaches</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Text, Speech, and Dialogue: 18th International Conference, TSD 2015 Proceedings
ISBN
978-3-319-24032-9
ISSN
0302-9743
e-ISSN
—
Number of pages
9
Pages from-to
122-130
Publisher name
Springer
Place of publication
Berlin
Event location
Plzeň
Event date
Sep 14, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000365947800014