Modelling of extreme losses in natural disasters
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F16%3A39901175" target="_blank" >RIV/00216275:25410/16:39901175 - isvavai.cz</a>
Result on the web
<a href="http://www.naun.org/main/NAUN/ijmmas/2016/a422001-463.pdf" target="_blank" >http://www.naun.org/main/NAUN/ijmmas/2016/a422001-463.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Modelling of extreme losses in natural disasters
Original language description
The aim of this paper is to describe parametric curvefitting methods for modelling extreme historical losses of natural catastrophes in the world. Article summarizes relevant theoretical results Extreme value theory (EVT) and Excess over Threshold Method (EOT) and results of their application to the data about amounts of damages in world catastrophe events in time period 2010- 2014, published by Swiss Re studies Sigma. We aim to develop the models for extreme catastrophic losses by selecting a particular probability distributions through statistical analysis of empirical data with the best possible estimate of the upper tail area.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Mathematical Models and Methods in Applied Sciences
ISSN
1998-0140
e-ISSN
—
Volume of the periodical
10
Issue of the periodical within the volume
2016
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
171-178
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-84963994565