All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Spam Filtering Using Regularized Neural Networks with Rectified Linear Units

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F16%3A39901973" target="_blank" >RIV/00216275:25410/16:39901973 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/chapter/10.1007/978-3-319-49130-1_6" target="_blank" >http://link.springer.com/chapter/10.1007/978-3-319-49130-1_6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-49130-1_6" target="_blank" >10.1007/978-3-319-49130-1_6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Spam Filtering Using Regularized Neural Networks with Rectified Linear Units

  • Original language description

    The rapid growth of unsolicited and unwanted messages has inspired the development of many anti-spam methods. Machine-learning methods such as Na?ve Bayes (NB), support vector machines (SVMs) or neural networks (NNs) have been particularly effective in categorizing spam /non-spam messages. They automatically construct word lists and their weights usually in a bag-of-words fashion. However, traditional multilayer perceptron (MLP) NNs usually suffer from slow optimization convergence to a poor local minimum and overfitting issues. To overcome this problem, we use a regularized NN with rectified linear units (RANN-ReL) for spam filtering. We compare its performance on three benchmark spam datasets (Enron, SpamAssassin, and SMS spam collection) with four machine algorithms commonly used in text classification, namely NB, SVM, MLP, and k-NN. We show that the RANN-ReL outperforms other methods in terms of classification accuracy, false negative and false positive rates. Notably, it classifies well both major (legitimate) and minor (spam) classes.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    AIIA 2016 Advances in Artificial Intelligence

  • ISBN

    978-3-319-49129-5

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

    65-75

  • Publisher name

    Springer

  • Place of publication

    Heidelberg

  • Event location

    Janov

  • Event date

    Nov 28, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000389797400006