Spam Filtering Using Regularized Neural Networks with Rectified Linear Units
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F16%3A39901973" target="_blank" >RIV/00216275:25410/16:39901973 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/chapter/10.1007/978-3-319-49130-1_6" target="_blank" >http://link.springer.com/chapter/10.1007/978-3-319-49130-1_6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-49130-1_6" target="_blank" >10.1007/978-3-319-49130-1_6</a>
Alternative languages
Result language
angličtina
Original language name
Spam Filtering Using Regularized Neural Networks with Rectified Linear Units
Original language description
The rapid growth of unsolicited and unwanted messages has inspired the development of many anti-spam methods. Machine-learning methods such as Na?ve Bayes (NB), support vector machines (SVMs) or neural networks (NNs) have been particularly effective in categorizing spam /non-spam messages. They automatically construct word lists and their weights usually in a bag-of-words fashion. However, traditional multilayer perceptron (MLP) NNs usually suffer from slow optimization convergence to a poor local minimum and overfitting issues. To overcome this problem, we use a regularized NN with rectified linear units (RANN-ReL) for spam filtering. We compare its performance on three benchmark spam datasets (Enron, SpamAssassin, and SMS spam collection) with four machine algorithms commonly used in text classification, namely NB, SVM, MLP, and k-NN. We show that the RANN-ReL outperforms other methods in terms of classification accuracy, false negative and false positive rates. Notably, it classifies well both major (legitimate) and minor (spam) classes.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
AIIA 2016 Advances in Artificial Intelligence
ISBN
978-3-319-49129-5
ISSN
0302-9743
e-ISSN
—
Number of pages
11
Pages from-to
65-75
Publisher name
Springer
Place of publication
Heidelberg
Event location
Janov
Event date
Nov 28, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000389797400006