All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Learning Interval-Valued Fuzzy Cognitive Maps with PSO Algorithm for Abnormal Stock Return Prediction

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F17%3A39911545" target="_blank" >RIV/00216275:25410/17:39911545 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-319-71069-3_9" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-71069-3_9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-71069-3_9" target="_blank" >10.1007/978-3-319-71069-3_9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Learning Interval-Valued Fuzzy Cognitive Maps with PSO Algorithm for Abnormal Stock Return Prediction

  • Original language description

    Stock return prediction is considered a challenging task in financial domain. The existence of inherent noise and volatility in daily stock price returns requires a highly complex prediction system. Generalizations of fuzzy systems have shown promising results for this task owing to their ability to handle strong uncertainty in dynamic financial markets. Moreover, financial variables are usually in difficult to interpret causal relationships. To overcome these problems, here we propose an interval-valued fuzzy cognitive map with PSO algorithm learning. This system is suitable for modelling complex nonlinear problems through causal reasoning. As the inputs of the system, we combine causally connected financial indicators and linguistic variables extracted from management discussion in annual reports. Here we show that the proposed method is effective for predicting abnormal stock return. In addition, we demonstrate that this method outperforms fuzzy cognitive maps and adaptive neuro-fuzzy rule-based systems with PSO learning.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA16-19590S" target="_blank" >GA16-19590S: Topic and sentiment analysis of multiple textual sources for corporate financial decision-making</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Theory and Practice of Natural Computing

  • ISBN

    978-3-319-71068-6

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

    113-125

  • Publisher name

    Springer

  • Place of publication

    Heidelberg

  • Event location

    Praha

  • Event date

    Dec 18, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000450354700009