A Profit Function-Maximizing Inventory Backorder Prediction System Using Big Data Analytics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F20%3A39916134" target="_blank" >RIV/00216275:25410/20:39916134 - isvavai.cz</a>
Result on the web
<a href="https://ieeexplore.ieee.org/abstract/document/9046037" target="_blank" >https://ieeexplore.ieee.org/abstract/document/9046037</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2020.2983118" target="_blank" >10.1109/ACCESS.2020.2983118</a>
Alternative languages
Result language
angličtina
Original language name
A Profit Function-Maximizing Inventory Backorder Prediction System Using Big Data Analytics
Original language description
Inventory backorder prediction is widely recognized as an important component of inventory models. However, backorder prediction is traditionally based on stochastic approximation, thus neglecting the substantial amount of useful information hidden in historical inventory data. To provide those inventory models with a big data-driven backorder prediction, we propose a machine learning model equipped with an undersampling procedure to maximize the expected profit of backorder decisions. This is achieved by integrating the proposed profit-based measure into the prediction model and optimizing the decision threshold to identify the optimal backorder strategy. We show that the proposed inventory backorder prediction model shows better prediction and profit function performance than the state-of-the-art machine learning methods used for large imbalanced data. Notably, the proposed model is computationally effective and robust to variation in both warehousing/inventory cost and sales margin. In addition, the model predicts both major (non-backorder items) and minor (backorder items) classes in a benchmark dataset.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA19-15498S" target="_blank" >GA19-15498S: Modelling emotions in verbal and nonverbal managerial communication to predict corporate financial risk</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE ACCESS
ISSN
2169-3536
e-ISSN
—
Volume of the periodical
8
Issue of the periodical within the volume
March
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
58982-58994
UT code for WoS article
000549806900002
EID of the result in the Scopus database
2-s2.0-85083078014