All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Combining rough set-based relevance and redundancy for the ranking and selection of nominal features

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F20%3A39916680" target="_blank" >RIV/00216275:25410/20:39916680 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S1877050920320561" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1877050920320561</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.procs.2020.09.156" target="_blank" >10.1016/j.procs.2020.09.156</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Combining rough set-based relevance and redundancy for the ranking and selection of nominal features

  • Original language description

    In this paper, we propose a new method for features ranking and selection. Our approach is based on ranking nominal features in terms of their relevance to the assigned class and mutual redundancy with the other features. To calculate the relevance and redundancy, we propose to use a rough-set based approach. After performing the ranking, features filtering is carried out in a supervised way enabling the user to decide on the number of the retained features. The experiments revealed that thanks to our method, it is possible to filter out numerous features describing data while still maintaining satisfactory classification accuracy achieved by the classifier trained using the reduced dataset. The comparative experiments performed with the use of publicly available datasets proved the high efficiency and competitiveness of our approach.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA19-15498S" target="_blank" >GA19-15498S: Modelling emotions in verbal and nonverbal managerial communication to predict corporate financial risk</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Procedia Computer Science : 24th KES International Conference on Knowledge-Based and Intelligent Information &amp; Engineering Systems KES2020

  • ISBN

  • ISSN

    1877-0509

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    1459-1468

  • Publisher name

    Elsevier Science BV

  • Place of publication

    Amsterdam

  • Event location

    ONLINE

  • Event date

    Sep 16, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article