All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Opinion mining of consumer reviews using deep neural networks with word-sentiment associations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F20%3A39916681" target="_blank" >RIV/00216275:25410/20:39916681 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-49161-1_35" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-49161-1_35</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-49161-1_35" target="_blank" >10.1007/978-3-030-49161-1_35</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Opinion mining of consumer reviews using deep neural networks with word-sentiment associations

  • Original language description

    Automated opinion mining of consumer reviews is becoming increasingly important due to the rising influence of reviews on online retail shopping. Existing approaches to automated opinion classification rely either on sentiment lexicons or supervised machine learning. Deep neural networks perform this classification task particularly well by utilizing dense document representation in terms of word embeddings. However, this representation model does not consider the sentiment polarity or sentiment intensity of the words. To overcome this problem, we propose a novel model of deep neural network with word-sentiment associations. This model produces richer document representation that incorporates both word context and word sentiment. Specifically, our model utilizes pre-trained word embeddings and lexicon-based sentiment indicators to provide inputs to a deep feed-forward neural network. To verify the effectiveness of the proposed model, a benchmark dataset of Amazon reviews is used. Our results strongly support integrated document representation, which shows that the proposed model outperforms other existing machine learning approaches to opinion mining of consumer reviews.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA19-15498S" target="_blank" >GA19-15498S: Modelling emotions in verbal and nonverbal managerial communication to predict corporate financial risk</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    IFIP Advances in Information and Communication Technology. Vol. 583

  • ISBN

    978-3-030-49160-4

  • ISSN

    1868-4238

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

    419-429

  • Publisher name

    Springer

  • Place of publication

    Heidelberg

  • Event location

    Neos Marmaras

  • Event date

    Jun 5, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article