Opinion mining of consumer reviews using deep neural networks with word-sentiment associations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F20%3A39916681" target="_blank" >RIV/00216275:25410/20:39916681 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-030-49161-1_35" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-49161-1_35</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-49161-1_35" target="_blank" >10.1007/978-3-030-49161-1_35</a>
Alternative languages
Result language
angličtina
Original language name
Opinion mining of consumer reviews using deep neural networks with word-sentiment associations
Original language description
Automated opinion mining of consumer reviews is becoming increasingly important due to the rising influence of reviews on online retail shopping. Existing approaches to automated opinion classification rely either on sentiment lexicons or supervised machine learning. Deep neural networks perform this classification task particularly well by utilizing dense document representation in terms of word embeddings. However, this representation model does not consider the sentiment polarity or sentiment intensity of the words. To overcome this problem, we propose a novel model of deep neural network with word-sentiment associations. This model produces richer document representation that incorporates both word context and word sentiment. Specifically, our model utilizes pre-trained word embeddings and lexicon-based sentiment indicators to provide inputs to a deep feed-forward neural network. To verify the effectiveness of the proposed model, a benchmark dataset of Amazon reviews is used. Our results strongly support integrated document representation, which shows that the proposed model outperforms other existing machine learning approaches to opinion mining of consumer reviews.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA19-15498S" target="_blank" >GA19-15498S: Modelling emotions in verbal and nonverbal managerial communication to predict corporate financial risk</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
IFIP Advances in Information and Communication Technology. Vol. 583
ISBN
978-3-030-49160-4
ISSN
1868-4238
e-ISSN
—
Number of pages
11
Pages from-to
419-429
Publisher name
Springer
Place of publication
Heidelberg
Event location
Neos Marmaras
Event date
Jun 5, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—