All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Predicting stock return volatility using sentiment analysis of corporate annual reports

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F21%3A39917733" target="_blank" >RIV/00216275:25410/21:39917733 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.taylorfrancis.com/chapters/edit/10.4324/9781003037903-5/predicting-stock-return-volatility-using-sentiment-analysis-corporate-annual-reports-petr-hajek-renata-myskova-vladimir-olej" target="_blank" >https://www.taylorfrancis.com/chapters/edit/10.4324/9781003037903-5/predicting-stock-return-volatility-using-sentiment-analysis-corporate-annual-reports-petr-hajek-renata-myskova-vladimir-olej</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Predicting stock return volatility using sentiment analysis of corporate annual reports

  • Original language description

    This chapter focuses on the short-term volatility of corporate stocks and the causes that triggered it, and derives implied volatility based on historical volatility. Chin et al. examined the links among stock market volatility, market sentiment, macroeconomic indicators, and spread volatility over the persisting long-term component and the temporary short-term component. They found no empirical evidence of the link between the volatile component and macroeconomic indicators but found that the intermediate component was linked to variations in market sentiment. The chapter aims to propose a machine learning-based model for predicting short-term stock return volatility and study the effect of annual report filing on abnormal changes in firms’ stock returns using the proposed model. It demonstrates that mining corporate annual reports can be effective in predicting short-term stock return volatility using a three-day event window.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

  • OECD FORD branch

    50206 - Finance

Result continuities

  • Project

    <a href="/en/project/GA19-15498S" target="_blank" >GA19-15498S: Modelling emotions in verbal and nonverbal managerial communication to predict corporate financial risk</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Essentials of Machine Learning in Finance and Accounting

  • ISBN

    978-0-367-48083-7

  • Number of pages of the result

    21

  • Pages from-to

    75-95

  • Number of pages of the book

    258

  • Publisher name

    Taylor &amp; Francis Ltd.

  • Place of publication

    Abingdon

  • UT code for WoS chapter