Predicting stock return volatility using sentiment analysis of corporate annual reports
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F21%3A39917733" target="_blank" >RIV/00216275:25410/21:39917733 - isvavai.cz</a>
Result on the web
<a href="https://www.taylorfrancis.com/chapters/edit/10.4324/9781003037903-5/predicting-stock-return-volatility-using-sentiment-analysis-corporate-annual-reports-petr-hajek-renata-myskova-vladimir-olej" target="_blank" >https://www.taylorfrancis.com/chapters/edit/10.4324/9781003037903-5/predicting-stock-return-volatility-using-sentiment-analysis-corporate-annual-reports-petr-hajek-renata-myskova-vladimir-olej</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Predicting stock return volatility using sentiment analysis of corporate annual reports
Original language description
This chapter focuses on the short-term volatility of corporate stocks and the causes that triggered it, and derives implied volatility based on historical volatility. Chin et al. examined the links among stock market volatility, market sentiment, macroeconomic indicators, and spread volatility over the persisting long-term component and the temporary short-term component. They found no empirical evidence of the link between the volatile component and macroeconomic indicators but found that the intermediate component was linked to variations in market sentiment. The chapter aims to propose a machine learning-based model for predicting short-term stock return volatility and study the effect of annual report filing on abnormal changes in firms’ stock returns using the proposed model. It demonstrates that mining corporate annual reports can be effective in predicting short-term stock return volatility using a three-day event window.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
50206 - Finance
Result continuities
Project
<a href="/en/project/GA19-15498S" target="_blank" >GA19-15498S: Modelling emotions in verbal and nonverbal managerial communication to predict corporate financial risk</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Essentials of Machine Learning in Finance and Accounting
ISBN
978-0-367-48083-7
Number of pages of the result
21
Pages from-to
75-95
Number of pages of the book
258
Publisher name
Taylor & Francis Ltd.
Place of publication
Abingdon
UT code for WoS chapter
—