All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fuzzy-based optimization of AODV routing for efficient route in wireless mesh networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F23%3A39920843" target="_blank" >RIV/00216275:25410/23:39920843 - isvavai.cz</a>

  • Result on the web

    <a href="https://peerj.com/articles/cs-1508/" target="_blank" >https://peerj.com/articles/cs-1508/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.7717/peerj-cs.1508" target="_blank" >10.7717/peerj-cs.1508</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fuzzy-based optimization of AODV routing for efficient route in wireless mesh networks

  • Original language description

    The performance of any communication system heavily relies on the efficient routing of interventions. This article addresses the significant issue of routing protocol selection for optimal path determination in networks. Particularly, when wireless communication occurs among mobile nodes with limited resources, such as batteries, the routing problem becomes even more challenging. This article proposes the Fuzzy Control Energy Efficient (FCEE) routing protocol to overcome these challenges. The FCEE protocol combines the Ad-Hoc On-Demand Distance Vector (AODV) protocol with fuzzy logic techniques to enhance network lifetime and performance. The proposed approach introduces a memory-based channel integrated with fuzzy logic methodologies, which effectively restricts the forwarding of unnecessary broadcast packets based on the energy availability of the operating node. Through extensive simulations, demonstrate the promising capabilities of FCEE as a routing protocol for wireless mesh networks. To further assess the effectiveness of the FCEE protocol, the proposed article compares it with two existing routing protocols: AODV and Intelligent Routing AODV (IRAODV). The simulation results shows that the FCEE routing protocol significantly enhances the reliability of the conventional AODV, providing improved link connectivity and longer route lifetimes. Additionally, our proposed protocol enhances the quality of service (QoS) for mesh routing, with an average throughput of 351.374 (Kbps) compared to 90 (Kbps) for IRAODV and 39 (Kbps) for AODV. Moreover, FCEE exhibits superior energy efficiency with an average energy consumption of 14, while IRAODV and AODV consume 40 and 90 joules, respectively. In conclusion, the FCEE routing protocol demonstrates its potential to address the challenges of efficient routing in wireless mesh networks. By leveraging fuzzy logic and integrating it with AODV, FCEE enhances network lifetime, performance, and energy efficiency, making it a promising solution for future wireless communication systems.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    PeerJ Computer Science

  • ISSN

    2376-5992

  • e-ISSN

    2376-5992

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    Neuveden

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    25

  • Pages from-to

    "e1508"

  • UT code for WoS article

    001087716100001

  • EID of the result in the Scopus database

    2-s2.0-85177433979