All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Default Risk Prediction Based on Support Vector Machine and Logit Support Vector Machine

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F23%3A39920854" target="_blank" >RIV/00216275:25410/23:39920854 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-18552-6_6" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-18552-6_6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-18552-6_6" target="_blank" >10.1007/978-3-031-18552-6_6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Default Risk Prediction Based on Support Vector Machine and Logit Support Vector Machine

  • Original language description

    This chapter aims to predict the credit customer default risk. We propose a machine learning algorithm such as Support Vector Machine and a hybrid default risk prediction model such as Logistic Regression and Support Vector Machine being known as LogitSVM (LSVM) to access the credit default risk. We apply three real-world credit databases to validate the probability and value of the proposed risk appraisal hybrid approaches. This chapter uses Type-I Error, Type-II Error, and Root Mean Squared Error (RMSE) to evaluate the performance of the algorithms. Empirical findings show that hybrid model experimentation (LogitSVM) maximizes overall accuracy and minimizes RMSE, Type-I error, and Type-II error. This study is useful for stakeholders to develop a wide variety of approaches to predict risk of default of the credit customer.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

  • OECD FORD branch

    50206 - Finance

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Novel financial applications of machine learning and deep learning : algorithms, product modeling, and applications

  • ISBN

    978-3-031-18551-9

  • Number of pages of the result

    14

  • Pages from-to

    93-106

  • Number of pages of the book

    231

  • Publisher name

    Springer Nature Switzerland AG

  • Place of publication

    Cham

  • UT code for WoS chapter