All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Wayside Diagnosis Of Metro Wheelsets Using Acoustic Sensor Data And One-Period Analysis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25510%2F17%3A39910395" target="_blank" >RIV/00216275:25510/17:39910395 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.engmech.cz/2017/im/doc/EM2017_proceedings_all.pdf" target="_blank" >http://www.engmech.cz/2017/im/doc/EM2017_proceedings_all.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Wayside Diagnosis Of Metro Wheelsets Using Acoustic Sensor Data And One-Period Analysis

  • Original language description

    This research promises a wheelset fault diagnosis methodology for metro train sets using wayside acoustic sensors information. Throughout the research, two different feature extraction techniques; Wavelet Packet Energy (WPE) and Time-domain Features (TDF) are employed in association with two state-of-art classifiers Fisher Linear Discriminant Analysis (FLDA) and Support Vector Machines (SVMs). The database is prepared by the acquisition of wayside acoustic sensor data accompanied by optical gates that detect wheelset center position while multiple passing of a single metro train set of type 81-71M is in daily operation with the contribution of a novel approach; one-period analysis. Acquired database is then divided into two classes which represent the healthy and faulty states of the wheelsets referring to the ground truth information of a faulty wheelset. Since the faulty states are insufficient to demonstrate the real classification performance, an adaptive synthetic sampling technique (ADASYN) is utilized to increase the number of faulty states. Promising results are observed up to 93% in classification of faulty wheelsets of the metro with the proposed techniques on acoustic sensor data. This study may aid to maintenance specialists to providing a cost effective monitoring of faulty condition of metro wheelsets.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20306 - Audio engineering, reliability analysis

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Engineering Mechanics 2017 : 23rd International Conference book of fulltexts

  • ISBN

    978-80-214-5497-2

  • ISSN

    1805-8248

  • e-ISSN

    neuvedeno

  • Number of pages

    4

  • Pages from-to

    458-461

  • Publisher name

    Vysoké učení technické v Brně

  • Place of publication

    Brno

  • Event location

    Svratka

  • Event date

    May 15, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000411657600104