All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Elucidating Super-Compressible States in Inner Structure of Vehicular Flow

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25510%2F24%3A39921226" target="_blank" >RIV/00216275:25510/24:39921226 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21340/24:00382245

  • Result on the web

    <a href="https://www.mdpi.com/2076-3417/14/2/600" target="_blank" >https://www.mdpi.com/2076-3417/14/2/600</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/app14020600" target="_blank" >10.3390/app14020600</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Elucidating Super-Compressible States in Inner Structure of Vehicular Flow

  • Original language description

    The article deals with the open questions in the theory of vehicular headway modeling. Specifically, the question of the existence of anomalous constellations in vehicular traffic micro-structure, in which the rate of fluctuations (measured by the stochastic compressibility) exceeds the fluctuation level of systems with non-interacting elements. The solution to this open problem is converted into the mathematical format working with the so-called balance particle systems, where seeking relevant relations is more straightforward and thus significantly easier. Presented research has shown that unit compressibility represents (despite popular opinion) the upper limit only for particle systems, in which there is no attractive interaction between the particles. In the article, the specific system is constructed in which the presence of an attractive force component will cause higher fluctuations than in the Poisson systems of non-interacting elements. This means that traffic constellations with higher compressibility (so-called super-compressible constellations) can be explained either by a discrepancy between the empirical traffic flow and the mathematical model used, or by the presence of attractive forces acting between individual vehicles. Using empirical vehicular data (measured on two parallel freeway lanes under reconstruction), we show that super-compressible states occur even though overtaking is prohibited. This means, therefore, that these super-compressible states arose without a doubt due to the mutual attraction of successive vehicles. In addition, the article shows that the presence of the aforementioned attractive forces appears predominantly in the fast lane, and only in situations where the traffic density is relatively low. At higher densities, the two freeway lanes are markedly synchronized, the opportunity for a sporty style of driving vanishes and the reason for changing lanes disappears. Under these circumstances, the attractive force component vanishes, which finally leads to the transition of the entire traffic system back to standard sub-compressible states.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Science - Basel

  • ISSN

    2076-3417

  • e-ISSN

    2076-3417

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    21

  • Pages from-to

    "10 January 2024"

  • UT code for WoS article

    001149155700001

  • EID of the result in the Scopus database

    2-s2.0-85192481416