The Zermelo conditions and higher order homogeneous functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F13%3A39892863" target="_blank" >RIV/00216275:25530/13:39892863 - isvavai.cz</a>
Alternative codes found
RIV/61988987:17310/13:A1401A5E
Result on the web
<a href="http://dx.doi.org/10.5486/PMD.2013.5265" target="_blank" >http://dx.doi.org/10.5486/PMD.2013.5265</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5486/PMD.2013.5265" target="_blank" >10.5486/PMD.2013.5265</a>
Alternative languages
Result language
angličtina
Original language name
The Zermelo conditions and higher order homogeneous functions
Original language description
Invariance under reparametrizations of integral curves of higher order differential equations, including variational equations related to Finsler geometry, is studied. The classical homogeneity concepts are introduced within the theory of (jet) differential groups, known in the theory of differential invariants. On this basis the well-known generalizations of the Euler theorem are obtained (the Zermelo conditions). It is shown that every integral curve of a system of differential equations whose left-hand sides are higher order positive homogeneous functions, is invariant with respect to all reparametrizations, i.e. a set solution. Then the positive homogeneity concept is applied to second order variational equations. We show that the systems with positive homogeneous Lagrangians are defined by positive homogeneous functions, and vice versa.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Publicationes Mathematicae
ISSN
0033-3883
e-ISSN
—
Volume of the periodical
82
Issue of the periodical within the volume
1
Country of publishing house
HU - HUNGARY
Number of pages
18
Pages from-to
59-76
UT code for WoS article
000324896500006
EID of the result in the Scopus database
—