All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Refined Max-Pooling and Unpooling Layers for Deep Convolutional Neural Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F16%3A39902263" target="_blank" >RIV/00216275:25530/16:39902263 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Refined Max-Pooling and Unpooling Layers for Deep Convolutional Neural Networks

  • Original language description

    The main goal of this paper is the introduction of new pooling and unpooling layers suited for deep convolutional neural networks. To this end, a new approximation of max-pooling inversion has been designed. The idea behind this approximation is also introduced in this paper. It is demonstrated on pools of size 2 x 2, with a stride of 2. The widely used technique of switches is combined with interpolation to form the new approximation. For that purpose, an unconventional expression of the switches has been used. Such an expression, allows the right placement of maxima in a reconstruction of original data, as well as interpolation of all unknown values in the reconstruction using the known maxima. The introduced inversion has been implemented into the aforementioned refined pooling and unpooling layers. Since they are suited for deep convolutional networks, behavior of the layers in the feed-forward and backpropagation passes had to be solved. In this context, the introduced conception of the switches has been further developed. Specifically, feed-forward and backpropagation switches are considered in the refined layers. One version of feed-forward and three versions of backpropagation switches have been introduced within this paper. The refined pooling and unpooling layers have been tested on a simple convolutional auto-encoder in order to verify functionality of the conception.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BD - Information theory

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Mendel 2016 : 22nd International Conference on Soft Computing

  • ISBN

    978-80-214-5365-4

  • ISSN

    1803-3814

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    131-142

  • Publisher name

    Vysoké učení technické v Brně

  • Place of publication

    Brno

  • Event location

    Brno

  • Event date

    Jun 8, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article