Mathematical model of induction heating
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F17%3A39912017" target="_blank" >RIV/00216275:25530/17:39912017 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1063/1.4992729" target="_blank" >http://dx.doi.org/10.1063/1.4992729</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.4992729" target="_blank" >10.1063/1.4992729</a>
Alternative languages
Result language
angličtina
Original language name
Mathematical model of induction heating
Original language description
One of mathematical models of induction heating can be described by a parabolic differential equation with the specific Joule looses in the body. Advantage of this method is that the detailed knowledge of the 3D-magnetic field is not necessary and move of the body or the inductor can be easily implemented. The specific Joule looses can computed by solving the Fredholm integral equation of the second kind for the eddy current of density by the Nyström method with the singularity subtraction.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the International Conference on Numerical Analysis and Applied Mathematics (ICNAAM-2016)
ISBN
978-0-7354-1538-6
ISSN
0094-243X
e-ISSN
1551-7616
Number of pages
4
Pages from-to
1-4
Publisher name
American Institute of Physics
Place of publication
Melville
Event location
Rhodos
Event date
Sep 19, 2016
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
000410159800539